1)chứng tỏ phân số sau là phân số tối giản
\(12.n+1/30.n+2 \)
2)chứng tỏ phn số sau là phân số tối giản
\(3.n+2/3.n+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(12n + 1,30n + 2) là d
Ta có: 12n + 1 chia hết cho d => 5(12n + 1) chia hết cho d => 60n + 5 chia hết cho d
30n + 2 chia hết cho d => 2(30n + 2) chia hết cho d => 60n + 4 chia hết cho d
=> 60n + 5 - (60n + 4) chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d => d = 1
=> ƯCLN(12n + 1,30n + 2) = 1
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
gọi d là ƯC(n+1; 3n+2)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n+3⋮d\\3n+2⋮d\end{cases}}}\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)
\(\Rightarrow3n+3-3n-2⋮d\)
\(\Rightarrow\left(3n-3n\right)+\left(3-2\right)⋮d\)
\(\Rightarrow0+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản
Gọi d = ƯCLN ( n + 1 ; 3n + 2 )
Ta có : n + 1 chia hết cho d => 3( n + 1 ) chia hết cho d
3n + 2 chia hết cho d
=> ( 3n + 3 - 3n - 2 ) chia hết cho d => 1 chia hết cho d
=> d thuộc { 1 ; - 1 }
=> n + 1 ; 3n + 2 là hai số nguyên tố cùng nhau
=> phân số \(\frac{n+1}{3n+2}\) là phân số tối giản
1. Để A tối giản thì:
(n + 1, n + 3) = 1
Gọi d là ƯC nguyên tố của n + 1 và n + 3
=> n + 3 - n - 1 chia hết cho d
=> 2 chia hết cho d
Mà d nguyên tố
=> d = 2
Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2
Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2
=> n + 3 = 2k (k thuộc Z)
=> n = 2k - 3
Vậy n khác 2k - 3 thì A tối giản.
2. 12n + 1 / 30n + 2 tối giản
=> (12n + 1, 30n + 2) = 1
Gọi ƯCLN (12n + 1, 30n + 2) = d
=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d
=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy p/số trên tối giản.
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
Gọi ƯCLN(n + 1 ; n + 2) = d\(\left(d\inℕ\right)\)
=> \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
=> n + 1 ; n + 2 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{n+2}\) là phân số tối giản
b) Gọi ƯCLN(2n + 3 ; 3n + 5) = d (d \(\inℕ\))
=> \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> 2n + 3 ; 3n + 5 là 2 số nguyên tố cùng nhau
=> \(\frac{2n+3}{3n+5}\) là phân số tối giản
a) Gọi ƯC( n + 1 ; n + 2 ) = d
=> n + 2 ⋮ d và n + 1⋮ d
=> n + 2 - ( n - 1 ) ⋮ d
=> 1 ⋮ d => d = 1
=> ƯCLN( n + 1 ; n + 2 ) = 1
hay n+1/n+2 tối giản ( đpcm )
b) Gọi ƯC( 2n + 3 ; 3n + 5 ) = d
=> 2n + 3 ⋮ d và 3n + 5 ⋮ d
=> 6n + 9 ⋮ d và 6n + 10 ⋮ d
=> 6n + 10 - ( 6n + 9 ) ⋮ d
=> 1 ⋮ d => d = 1
=> ƯCLN( 2n + 3 ; 3n + 5 ) = 1
hay 2n+3/3n+5 tối giản ( đpcm )
a) Đặt \(d=\left(15n+1,30n+1\right)\).
Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).
Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)
Suy ra \(d=1\).
Suy ra đpcm.
Gọi d là ước chung của n+1 và n+2
Khi đó:n+1 chia hết cho d
n+2 chia hết cho d
=>(n+1)-(n+2) chia hết cho d
=>1 chia hết cho d
=>n+1 và n+2 là 2 số nguyên tố cùng nhau
Vậy phân số n+1/n+2 là phân số tối giản
Gọi \(ƯCLN\)\(\left(\frac{n+1}{n+2}\right)\)là \(d\left(d\in Z\right)\)
\(\Rightarrow n+1\)chia hết cho \(d\)
\(\Rightarrow n+2\)chia hết cho \(d\)
\(\Rightarrow1\left(n+1\right)\) chia hết cho \(d\)
\(\Rightarrow1\left(n+2\right)\) chia hết cho \(d\)
\(\Rightarrow1\left(n+1\right)-1\left(n+2\right)\)chia hết cho \(d\)
\(\Rightarrow-1\) chia hết cho \(d\)
\(\Rightarrow d\inƯ\left(-1\right)=\left\{-1;1\right\}\)
\(\Rightarrow d=\int^1_{-1}\)
Mà bạn này, lớp 5 đã học \(ƯCLN\) đâu nhỉ.