Cho a,b,c là 3 số thực thỏa mãn điều kiện a/b=c/a và a+b+c=abc tìm GTNN của a và nói rõ b,c bằng bao nhiêu thì a đạt GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=1-a\), \(y=1-b\), \(z=1-c\)
Ta có : \(1+a=\left(1-b\right)+\left(1-c\right)=y+z\)
\(1+b=\left(1-a\right)+\left(1-c\right)=x+z\)
\(1+c=\left(1-a\right)+\left(1-b\right)=x+y\)
Áp dụng bđt Cauchy, ta có : \(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c=\frac{1}{3}\)
Vậy Min A = 8 \(\Leftrightarrow a=b=c=\frac{1}{3}\)
\(A=\left(b+c\right)^2+b^2+c^2=2b^2+2c^2+2bc=2\left(b^2+bc+c^2\right)\) (tự hiểu nhé)
Mà \(a^2=2\left(a+c+1\right)\left(a+b-1\right)=2a^2+2\left(ab+bc+ca\right)+2\left(b-c\right)-2\)
\(\Leftrightarrow a^2+2a\left(b+c\right)+2bc-2=0\) (*)
\(\Leftrightarrow2bc=2-a^2-2a\left(b+c\right)=2-\left(b+c\right)^2+2\left(b+c\right)^2\) (mấy cái này là từ a + b + c =0 suy ra a = -(b+c) suy ra a2 = [-(b+c)]2 = (b+c)2 thôi!)
\(\Leftrightarrow\left(b+c\right)^2-2bc=-2\)
hay c2 + b2 = -2?? hay là mình làm sai nhì?
\(a^2=2\left(a+c+1\right)\left(a+b-1\right)\)
\(\Leftrightarrow\left(b+c\right)^2=\left(b-1\right)\left(c+1\right)\)
\(\Leftrightarrow\left(b-1\right)^2+\left(c+1\right)^2=0\)
\(\Rightarrow a=0,b=1,c=-1\)
\(\Rightarrow A=2\)
Ta có: \(a\le b+1\le c+2\)
\(\Rightarrow a+b+1+c+2\le3.\left(c+2\right)\)
\(\Rightarrow a+b+c+3\le3c+6.\)
Mà \(a+b+c=1\)
\(\Rightarrow1+3\le3c+6\)
\(\Rightarrow4\le3c+6\)
\(\Rightarrow-2\le3c\)
\(\Rightarrow-\frac{2}{3}\le c.\)
Hay \(c\ge-\frac{2}{3}\)
Dấu " = " xảy ra khi:
\(c=-\frac{2}{3}.\)
Vậy \(MIN_c=-\frac{2}{3}.\)
Chúc bạn học tốt!
Vì:0≤a≤b+1≤c+2 nên 0≤a+b+1+c+2≤c+2+c+2+c+2
=>0≤4≤3c+6(vì a+b+c=1)
Hay 3c≥-2=>c≥-2/3.
Vậy GTNN của c là:-2/3 khi đó a+b=5/3.
Sao hok ai giải giúp thế