Cho A = 2 + 22 + 23 +...+ 260. Chứng tỏ rằng 15 là ước của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2+22+23+24)+(257+258+259+260)
A=2(1+2+22+23)+...+257(1+2+22+23)
A=(1+2+22+23)(1+...+257)=15(1+...+257)⋮15
Bài 5. Có 16 con bò. Số trâu nhiều hơn số bỏ là 14 con. Hỏi có bao nhiêu con trâu?
giúp mik vs ạA=(2+22+23+24)+(257+258+259+260)
A=2(1+2+22+23)+...+257(1+2+22+23)
A=(1+2+22+23)(1+...+257)=15(1+...+257)⋮15
\(A=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+...+2^{57}\right)⋮15\)
Sửa dùm mình dòng cuối cùng là " Vậy \(A⋮5\) " nha. Cảm ơn bạn.
Lời giải:
$A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^{58}+2^{59}+2^{60})$
$=2(1+2+2^2)+2^4(1+2+2^2)+....+2^{58}(1+2+2^2)$
$=(1+2+2^2)(2+2^4+....+2^{58})$
$=7(2+2^4+....+2^{58})\vdots 7$.
A = 2+22+23+...+260
A = 2.(1+2+22) + 24.(1+2+22) + ... + 258.(1+2+22)
A = 2.7+24.7+...+258.7
A= 7. (2+24+...+258) chia hết cho 7
--> A chia hết cho 7 (ĐPCM)
Ta có:
\(H=2+2^2+2^3+...+2^{60}\)
\(H=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(H=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(H=3\cdot\left(2+2^3+...+2^{59}\right)\)
Vậy H chia hết cho 3
_______
\(H=2+2^2+2^3+...+2^{60}\)
\(H=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(H=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)
\(H=7\cdot\left(2+2^4+...+2^{58}\right)\)
Vậy H chia hết cho 7
__________
\(H=2+2^2+2^3+...+2^{60}\)
\(H=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(H=2\cdot\left(1+2+4+8\right)+2^5\cdot\left(1+2+4+8\right)+...+2^{57}\cdot\left(1+2+4+8\right)\)
\(H=15\cdot\left(2+2^5+...+2^{57}\right)\)
Vậy H chia hết cho 15