- tìm phân số tối giản x:y biết rằng cộng tử số với 9, cộng mẫu số với 15 thì đc phân số bằng phân số đã cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có :
\(\frac{x+9}{y+15}=\frac{x}{y}\)
=> y(x + 9) = x(y + 15)
=> xy + 9y = xy + 15x
=> 9y = 15x
=> \(\frac{x}{y}=\frac{9}{15}\)
Vì \(\frac{x}{y}\)tối giản
=> \(\frac{x}{y}=\frac{3}{5}\)
Theo đề, ta có:
\(\dfrac{a+4}{b+10}=\dfrac{a}{b}\)
=>ab+4b=ab+10a
=>4b=10a
=>4b=10a
=>b/a=10/4
hay a/b=2/5
Theo đề bài ra ta có :
\(\frac{a}{b}=\frac{a+4}{b+10}\left(1\right)\)
Nêu tính chất hai phân số bằng nhau , từ ( 1 ) =>
\(a\left(b+10\right)=b\left(a+4\right)\)
\(\Leftrightarrow ab+10a=ab+4b\)
\(\Leftrightarrow10a=4b\)
Do đó : \(\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)
b ) Vì \(\frac{a+b}{2b}=\frac{2a}{b}\left(gt\right)\) nêu theo tính chất hai phân số bằng nhau , ta có :
\(\left(a+b\right)b=2a.2b\)
\(\Leftrightarrow ab+b^2=4ab\)
\(\Leftrightarrow b^2=3ab\left(2\right)\)
Mà : \(b\ne0\)nên từ ( 2 )=> \(b=3a\)tức là : \(\frac{a}{b}=\frac{1}{3}\)
Vậy phân số tối giản \(\frac{a}{b}=\frac{1}{3}\)
minh chi lam dc phan a thui:
a)ta co:a+4/b+10=a/b
(a+4).b=(b+10).a
ab+4b=ba+10a
4b=10a
=)2b=5a
=)a/b=2/5
Ta có:
\(\frac{x}{y}=\frac{x+4}{y+10}\)
=>x(y+10)=y(x+4)
=>xy+10x=yx+4y
=>10x=4y
=>\(\frac{x}{y}=\frac{4}{10}=\frac{2}{5}\)
Vậy...
Ta có :
\(\frac{x}{y}=\frac{x+4}{y+10}\)
\(\Rightarrow x\left(y+10\right)=y\left(x+4\right)\)
\(xy+10x=xy+4y\)
\(10x=4y\)
\(5x=2y\)
\(\frac{x}{y}=\frac{2}{5}\)
gọi a,b là tử & mẫu của ps đó. Ta có:
(a+b)/b=5a/b
<=>a/b+b/b-5a/b=0
<=>-4a/b+1=0
<=>a/b=1/4
Vậy a=1, b=4
Ráp lại, ta có:
1/4 là pstg
(1+4)/4=5/4 gấp 5 lần 1/4
Vậy ps cần tìm là 1/4
a) Theo đề bài, ta có:
\(\frac{a}{b}=\frac{a+4}{b+10}\) \(\left(1\right)\)
nên theo tính chất hai phân số bằng nhau, từ \(\left(1\right)\) ta suy ra:
\(a\left(b+10\right)=b\left(a+4\right)\)
\(\Leftrightarrow\) \(ab+10a=ab+4b\)
\(\Leftrightarrow\) \(10a=4b\)
Do đó, \(\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)
b) Vì \(\frac{a+b}{2b}=\frac{2a}{b}\) \(\left(gt\right)\) nên theo tính chất hai phân số bằng nhau, ta có:
\(\left(a+b\right)b=2a.2b\)
\(\Leftrightarrow\) \(ab+b^2=4ab\)
\(\Leftrightarrow\) \(b^2=3ab\) \(\left(2\right)\)
Mà \(b\ne0\) nên từ \(\left(2\right)\) suy ra \(b=3a\) , tức là \(\frac{a}{b}=\frac{1}{3}\)
Vậy, phân số tối giản \(\frac{a}{b}\) cần tìm là \(\frac{1}{3}\)