K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

dễ quá đi mất

16 tháng 12 2021

Phúc dễ thj lm đi 

Đặt \(\sqrt[3]{a}=x;\sqrt[3]{b}=y\)

=>\(Q=\dfrac{x^4+x^2y^2+y^4}{x^2+xy+y^2}\)

\(=\dfrac{x^4+2x^2y^2+y^4-x^2y^2}{x^2+xy+y^2}\)

\(=\dfrac{\left(x^2+y^2\right)^2-\left(xy\right)^2}{x^2+xy+y^2}=\dfrac{\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)}{x^2+xy+y^2}\)

\(=x^2-xy+y^2\)

\(=\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}\)

17 tháng 8 2016

a/ \(\sqrt{8\left(\sqrt{2}-\sqrt{3}\right)^2}=2\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)=2\sqrt{6}-4\)

b/ \(ab\sqrt{1+\frac{1}{a^2b^2}}=ab.\sqrt{\frac{a^2b^2+1}{a^2b^2}}=\sqrt{a^2b^2.\frac{a^2b^2+1}{a^2b^2}}=\sqrt{a^2b^2+1}\)

c/ \(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}=\sqrt{\frac{a}{b^3}\left(1+\frac{1}{b}\right)}=\frac{1}{b}.\sqrt{\frac{a}{b}\left(1+\frac{1}{b}\right)}\)

d/ \(\frac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{a}\)

11 tháng 9 2017

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{a}=x\\\sqrt[3]{b}=y\end{matrix}\right.\) thì ta có:

\(Q=\dfrac{x^4+x^2y^2+y^4}{x^2+xy+y^2}=\dfrac{\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)}{x^2+xy+y^2}=x^2-xy+y^2\)

Vậy \(Q=\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}\)

b: \(A=\dfrac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)

\(=\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}\)

\(\Leftrightarrow A^3=4+\sqrt{15}+4-\sqrt{15}+3\cdot A\cdot1\)

\(\Leftrightarrow A^3-3A-8=0\)

hay \(A\simeq2.49\)

a: \(B=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)

\(\Leftrightarrow B^3=5-\sqrt{17}+5+\sqrt{17}+3\cdot B\cdot2=10+6B\)

\(\Leftrightarrow B^3-6B-10=0\)

hay \(B\simeq3.05\)

6 tháng 7 2019

\(b,\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}+\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\)

\(=\frac{2+\sqrt{3}}{1-\sqrt{3-2\sqrt{3}+1}}+\frac{2-\sqrt{3}}{1+\sqrt{3+2\sqrt{3}+1}}\)

\(=\frac{2+\sqrt{3}}{1-\sqrt{\left(\sqrt{3}-1\right)^2}}+\frac{2-\sqrt{3}}{1+\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\frac{2+\sqrt{3}}{1-\left(\sqrt{3}-1\right)}+\frac{2-\sqrt{3}}{1+\sqrt{3}+1}\)

\(=\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}\)

\(=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(=\frac{4+4\sqrt{3}+3+4-4\sqrt{3}+3}{4-3}\)

\(=14\)

6 tháng 7 2019

\(a,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+4+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)

\(=\frac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2}+\frac{\sqrt{2}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{2}.2}{\sqrt{2}+\sqrt{3}+2}\)

\(=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}\)

\(=1+\sqrt{2}\)