4+100=
9+100=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức : \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
\(B=\frac{100^9+1}{100^9-4}>\frac{100^9+1+3}{100^9-4+3}\)
Vì \(100^9+1>100^9-4\)
\(\Rightarrow B>\frac{100^9+4}{100^9-1}=A\)
\(B>A\)
Ta có : \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Nên : \(\frac{100^9+1}{100^9-4}>\frac{100^9+1+3}{100^9-4+3}=\frac{100^9+4}{100^9-1}\)
Vậy \(A>B\)
4/3>1;1>3/4;4/3>3/4
1<11/9;9/11<11/9
100/99>1;1>99/100;100/99>99/100
minh nha cac ban
4/3>1;1>3/4;4/3>3/4
1<11/9;9/11<11/9
100/99>1;1>9/100;100/99>99/100
Ta có A = \(\frac{100^9+4}{100^9-1}=\frac{100^9-1+5}{100^9-1}=1+\frac{5}{100^9-1}\)
B = \(\frac{100^9+1}{100^9-4}=\frac{100^9-4+5}{100^9-4}=1+\frac{5}{100^9-4}\)
Vì \(\frac{5}{100^9-1}>\frac{5}{100^9-4}\Rightarrow1+\frac{5}{100^9-1}>1+\frac{5}{100^9-4}\Rightarrow A>B\)
a, 97/583 < 13/77
b, \(-\left(\frac{9^{100}+4}{9^{100}-2}\right)< -\left(\frac{9^{100}}{9^{100}-6}\right)\)
chúc bạn hk tốt!!(nhớ k cho mình nha!!@@)
A = -1 - 2 - 3 - ... - 100
= -(1 + 2 + 3 + ... + 100)
= -100.101 : 2
= -5050
--------
B = -2 - 4 - 6 - ... - 100
= -(2 + 4 + 6 + ... + 100)
Số số hạng của B:
(100 - 2) : 2 + 1 = 50 (số)
B = -(100 + 2) . 50 : 2 = -2550
--------
C = -6 - 9 - 12 - ... - 99
= -(6 + 9 + 12 + ... + 99)
Số số hạng của C:
(99 - 6) : 3 + 1 = 32 (số)
C = -(99 + 6) . 32 : 2 = -1680
--------
D = 4 - 8 + 12 - 16 + ... + 196 - 200
Số số hạng của D:
(200 - 4) : 4 + 1 = 50 (số)
D = (4 - 8) + (12 - 16) + ... + (196 - 200)
= -4 + (-4) + ... + (-4) (25 số -4)
= -4.25
= -100
TL
4+100=104
9+100=109
học tốt
#@#@#@#
=104
=109