so sánh:
1 phần 5^199 và 1 phần 3^300
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300
1) \(5^{199}< 5^{200}=25^{100}\)
\(3^{300}=27^{100}>25^{100}\)
\(\Rightarrow3^{300}>5^{199}\)
\(\Rightarrow\dfrac{1}{3^{300}}< \dfrac{1}{5^{199}}\)
2) a) \(107^{50}=\left(107^2\right)^{25}=11449^{25}\)
\(73^{75}=\left(73^3\right)^{25}=389017^{25}>11449^{25}\)
\(\Rightarrow107^{50}< 73^{75}\)
b) \(54^4< 5^{12}< 21^{12}\Rightarrow54^4< 21^{12}\)
Ta sẽ so sánh \(5^{199}\) và \(3^{300}\)
Mà:\(5^{199}< 5^{200}=25^{100}< 27^{100}=3^{300}\)
\(\Rightarrow5^{199}< 3^{300}\Rightarrow\frac{1}{5^{199}}>\frac{1}{3^{300}}\)
Ta có :
\(5^{199}< 5^{200}=5^{2\cdot100}=25^{100}\)
\(3^{300}=3^{3\cdot100}=27^{100}\)
Mà \(25^{100}< 27^{100}\Rightarrow5^{199}< 3^{300}\)
Vậy \(\dfrac{1}{3^{300}}>\dfrac{1}{5^{199}}\)
3³⁰⁰ = (3³)¹⁰⁰ = 27¹⁰⁰
5²⁰⁰ = (5²)¹⁰⁰ = 25¹⁰⁰
Do 27 > 5 nên 27¹⁰⁰ > 25¹⁰⁰
⇒ 3³⁰⁰ > 5²⁰⁰ (1)
Do 200 > 199 nên 5²⁰⁰ > 5¹⁹⁹ (2)
Từ (1) và (2) ⇒ 3³⁰⁰ > 5¹⁹⁹
⇒ 1/3³⁰⁰ < 1/5¹⁹⁹
5199 < 5200 = 5(2.100) = 25100
3300 = 3(3.100) = 27100
= > 5199 < 3300
3^300 = (3^3)^100 = 27^100
5^199 < 5^200 mà 5^200 = 25^100
25^100<27^100 => 3^300>5^200>5^199
=> 1/5^199 > 1/3^300
3^300=(3^3)^100=27^100