Cho tam giác ABC vg cân ở A, AH là đg cao. Các tia pg của góc AHB và AHC lần lượt cắt AB, AC tại D và E CMR: a,Tứ giác ADHE là hình vg b, DE// BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAHD vuông tại H và ΔAKD vuông tại K co
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
b: góc BAD+góc CAD=90 độ
góc BDA+góc DAH=90 độ
góc CAD=góc DAH
=>góc BAD=góc BDA
=>ΔBAD cân tại B
Vì tam giác ABC cân có AH là đường cao
nên AH đồng thời là đường phân giác
\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)
Ta có \(AH\perp BC\)
Mà HD và HE lần lượt là các đường phân giác
nêngócAHD=AHE
Suy ra tam giác AHD=AHE ( góc cạnh góc) ( bạn tự chứng minh)
nên AD=AE
Chứng minh AE=EH( tự chứng minh)
Mà HE=HD do tam giác AHD VÀ tam giác AHE bằng nhau
nên AE=EH=DH=AD
Vậy AEDH là hình thoi
b) Chứng minh AE=EC
AD=DB
Aps dụng tính chất đường trung bình suy ra dpcm
a, AH là đường cao của tam giác ABC (gt)
Tam giác ABC vuông cân tại A (gt)
=> AH đồng thời là đường phân giác của tam giác ABC (đl)
=> góc HAB = 1/2 góc BAC (đl)
mà góc BAC = 90 do tam giác ABC vuông cân tại A (gt)
=> góc HAB = 90 : 2 = 45 (1)
HE là phân giác của góc CHA (gt)
=> góc EHA = 1/2 góc CHA (Đl)
mà góc CHA = 90 do AH là đường cao (gt)
=> góc EHA = 90 : 2 = 45 (2)
(1)(2) => góc EHA = góc HAB = 45 mà 2 góc này sole trong
=> EH // AD (đl)
xét tứ giác ADHE
=> ADHE là hình thang
b, chứng minh đường trung bình
a: Xét tứ giác ADHE có
\(\widehat{EAD}=\widehat{ADH}=\widehat{AEH}=90^0\)
Do đó: ADHE là hình chữ nhật
a: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
=>DE=AH=6cm
b: Gọi O là giao của AH và DE
=>O là trung điểm chung của AH và DE
mà AH=DE
nên OA=OH=OD=OE
Ta có: góc OHD+góc MHD=90 độ
góc ODH+góc MDH=90 độ
mà góc OHD=góc ODH
nên góc MHD=góc MDH
=>ΔMHD cân tại M và góc MDB=góc MBD
=>ΔMBD cân tại M
=>MH=MB
=>M là trung điểm của HB
Cm tương tự, ta được N là trung điểm của HC
=>MN=1/2BC
d: \(AD\cdot AB=AH^2\)
\(AE\cdot AC=AH^2\)
Do đó: \(AD\cdot AB=AE\cdot AC\)