Bài 1: Cho tam giác ABC vuông tại A có 0 B 53 a) Tính C b) Trên cạnh BC lấy D sao cho BD = BA. Tia phân giác của góc B cắt AC ở E. Chứng minh BEA BED . Từđó suy ra ED BC c) Qua C vẽ đường thẳng vuông góc với BE tại H, CH cắt AB tại F. Chứng minh rằng BHF BHC d) Chứng minh BAC BDF và D, E, F thẳng hàng. Bài 2: Cho ABC có AB AC ; M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM MD. Chứng minh: a) AMB DMC . Từ đó suy ra AB // CD b) AC // BD và AC = BD c) AM BC. Bài 3: Cho tam giác ABC có AB AC . Gọi M là một điểm nằm trong tam giác sao cho MB MC ; N là trung điểm của BC. Chứng minh: a) AMB DMC . Từ đó suy ra AM là tia phân giác của ·BAC. b) Ba điểm A; M; N thẳng hàng. c) MN là đường trung trực của đoạn thẳng BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{C}+35^0=90^0\)
hay \(\widehat{C}=55^0\)
Vậy: \(\widehat{C}=55^0\)
b) Xét ΔBEA và ΔBED có
BA=BD(gt)
\(\widehat{ABE}=\widehat{DBE}\)(BE là tia phân giác của \(\widehat{ABD}\))
BE chung
Do đó: ΔBEA=ΔBED(c-g-c)
c) Xét ΔBHF vuông tại H và ΔBHC vuông tại H có
BH chung
\(\widehat{FBH}=\widehat{CBH}\)(BH là tia phân giác của \(\widehat{FBC}\))
Do đó: ΔBHF=ΔBHC(Cạnh góc vuông-góc nhọn kề)
a) Ta có : tam giác ABC vuông tại A
=> góc B + góc C = 90\(^o\)
Mà góc B = 53\(^o\)
=> góc C = góc A - góc B
=> góc C = 90\(^o\)- 53\(^o\)
=> góc C = 37\(^o\)
b) Xét tam giác BEA và tam giác BED có :
BD = BA (gt)
BE là cạnh chung
góc ABE = góc DBE ( BE là tia p/giác của góc B)
=> tam giác BEA = tam giác BED
c) Ta có CH vuông góc với BE
=> Tam giác BHC và tam giác BHF là tam giác vuông
Xét tam giác vuông BHF và tam giác vuông BHC có:
BH là cạnh chung
góc FBH = góc HBC ( BE là tia p/giác của góc B)
=> tam giác vuông BHF = tam giác vuông BHC ( cạnh góc vuông + góc nhọn )
=> BF = BC ( 2 cạnh tương ứng ) (*)
d) Xét tam giác BEF và tam giác BEC có :
BF = BC ( theo (*))
góc FBE = góc CBE ( BE là tia p/giác của góc B)
BE là cạnh chung
=> tam giác BEF = tam giác BEC (c . g . c )
=> góc BFD = góc BCA ( 2 góc tương ứng ) (**)
Xét tam giác BAC và tam giác BDF có :
góc BFD = góc BCA ( theo (**))
góc B là góc chung
BA = BD (gt)
=> tam giác BAC = tam giác BDF ( g . c . g )
=> góc FDB = góc CAB ( 2 góc tương ứng )
Xét tam giác BED có : góc EBD + góc BED + góc BDE = 180\(^o\)
Mà :góc FDB = góc CAB = 90\(^o\)
góc EBD = \(\frac{1}{2}\)góc B = \(\frac{53}{2}\)= 26,5\(^o\)
=> góc BED = 180\(^o\)- (90\(^o\)+ 26,5\(^o\))
=> góc BED = 180\(^o\)- 116,5\(^o\)
=> góc BED = 63,5\(^o\)
Mặt khác : Tam giác BED = tam giác BEA
=> góc AEB = BED = 63,5\(^o\)
Xét tam giác FAE có :góc FAE + góc FEA + góc AFE = 180\(^o\)
Mà : góc FAE = 90\(^o\), góc AFE = góc ACB = 37\(^o\)
=> FEA = 180\(^o\)- (90\(^o\)+ 37\(^o\))
=> FEA = 180\(^o\)- 127\(^o\)
=> FEA = 53\(^o\)
Lại có : góc FAD = góc FEA + góc AEB + góc BED
=> FAD = 53\(^o\)+ 63,5\(^o\)+ 63,5 \(^o\)
=> FAD = 180\(^o\)
=> D, F, E thẳng hàng
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
b: Xét ΔBFC có
BH là đường cao
BH là đường phân giác
Do đó: ΔBFC cân tại B
c: Ta có: ΔBFC cân tại B
=>BF=BC
Xét ΔBDF và ΔBAC có
BD=BA
\(\widehat{DBF}\) chung
BF=BC
Do đó: ΔBDF=ΔBAC
=>\(\widehat{BDF}=\widehat{BAC}=90^0\)
Ta có: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}\)
mà \(\widehat{BAE}=90^0\)
nên \(\widehat{BDE}=90^0\)
mà \(\widehat{BDF}=90^0\)
và DE,DF có điểm chung là D
nên D,E,F thẳng hàng
a: Xét ΔBEA và ΔBED có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBEA=ΔBED
a,
Xét tam giác vuông ABC có:
góc BAC=90°(gt)
góc B=53°(gt)
=>góc ACB=90°-53°=37°
b,
Xét tam giác BAE và tam giác BDE có:
BA=BD(gt)
góc DBE=góc ABE(BE là phân giác góc B)
BE cạnh chung
=>tam giác BAE=tam giác BDE(c.g.c) (1)
Lại do góc EAB=góc CAB=90°(gt)
Từ (1)=>góc EAB=góc EDB=90°
c,
Do CH_|_BE tại H(gt)
=>góc BHC=góc BHF=90°
Xét tam giác BHC và tam giác BHF có:
góc HBC=góc HBF=53/2=26,5°(BE là phân giác)
BH cạnh chung
góc HFB=góc HCB=90°-26,5°=63,5°
=>tam giác BHC=tam giác BHF(g.c.g)
d,
Tam giác Vuông BDF có:
góc DBF+góc DFB=90°
=>góc DFB=90°-53°=37°
Mà góc ACB=37°(cmt)
=>góc DFB=góc ACB=37°
Ta lại có:
BD=BA(gt)
góc CBH=góc HBF=26,5°
=>tam giác BAC=tam giác DBF(g.c.g)
Theo tổng 3 góc trong 1 tam giác,ta có:
-Trong tam giác vuông CDF có:
góc D=90°
góc C=63,5°
=>góc F=180°-(90+63,5)=26,5°
-trong tam giác vuông FHE có:
góc H=90°
góc F=26,5°(cmt)
=>góc HEF=180°-(90°+26,5)=63,5° (2)
-trong tam giác vuông CHE có:
góc H=90°
góc HCE=góc HCB-góc ACB
=63,5°-37°=26,5°
=>góc HEC=180°-(90°+26,5°)=63,5° (3)
-trong tam giác vuông EDC có:
góc D=90°
góc C=37°(cmt)
=>góc CED=180-(90°+37°)=53° (4)
Cộng (2),(3),(4) vế theo vế, ta được:
góc (HEF+HEC+CED)=63,5°+63,5°+53°=180°
=>3 điểm D,E,F thẳng hàng(đpcm)
cac ban giup minh voi nhe