Cho \(H=2+\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}.\) Chứng minh rằng H > 50 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H=2+\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)
\(=2+1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{2500}\)
\(=2+49-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{2500}\right)\)
\(=51-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}\right)\)
Do \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4.4}< \frac{1}{3.4};...;\frac{1}{50.50}< \frac{1}{49.50}\)
Nên \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}< 1\)
\(\Rightarrow H=51-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}\right)>51-1=50\)
Vậy H>50
\(H=2+\dfrac{4-1}{4}+\dfrac{9-1}{9}+\dfrac{16-1}{16}+..+\dfrac{2500-1}{2500}\)\(H=2+49-\dfrac{1}{4}-\dfrac{1}{9}-\dfrac{1}{16}-..-\dfrac{1}{2500}\)
\(H-51=-\dfrac{1}{4}-\dfrac{1}{9}-\dfrac{1}{16}-..-\dfrac{1}{2500}\)
\(H-51=-\left(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+..+\dfrac{1}{50.50}\right)\)
\(-\left(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+..+\dfrac{1}{50.50}\right)>-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{49.50}\right)\)
\(H-51>-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{49.50}\right)\)
\(H-51>-\left(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+..+\dfrac{50-49}{49.50}\right)\)
\(H-51>-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(H-51>-\left(1-\dfrac{1}{50}\right)\)
\(H>-\dfrac{49}{50}+51>50\)
\(B=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+...+\left(1-\frac{1}{2500}\right)\)
\(B=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)
\(B=1+1+...+1-\frac{1}{2^2}-\frac{1}{3^2}-...-\frac{1}{50^2}\)
\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
vì \(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< 1\)
nên B>A
B = 3/4 + 8/9 + 15/16 + .... + 2499/2500
B = (1 - 1/4) + (1 - 1/9) + (1 - 1/16) + ... + (1 - 1/2500)
B = (1 - 1/22) + (1 - 1/32) + (1 - 1/42) + ... + (1 - 1/502)
B = (1 + 1 + 1 + ... + 1) - (1/22 + 1/32 + 1/42 + ...+ 1/502)
49 số 1
B = 49 - (1/22 + 1/32 + 1/42 + ... + 1/502)
=> B < 49 (1)
B > 49 - (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/49×50)
B > 49 - (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50)
B > 49 - (1 - 1/50)
B > 49 - 1 + 1/50
B > 48 + 1/50 > 48 (2)
Từ (1) và (2) => 48 < B < 49
=> B không phải là số nguyên ( đpcm)
B = 3/4 + 8/9+ 15/16 + ... + 2499/2500
B = (1 - 1/4) + (1 - 1/9) + (1 - 1/16) + ... + (1 - 1/2500)
B = (1 - 1/22) + (1 - 1/32) + (1 - 1/42) + ... + (1 - 1/502)
B = (1 + 1 + 1 + ... + 1) - (1/22 + 1/32 + 1/42 + .... + 1/502)
49 số 1
=> B = 49 - (1/22 + 1/32 + 1/42 + ... + 1/502)
=> B < 49 (1)
B > 49 - (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/49×50)
B > 49 - (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50)
B > 49 - (1 - 1/50)
B > 49 - 1 + 1/50
B > 48 + 1/50 > 48 (2)
Từ (1) và (2) => 48 < M < 49
=> M không phải số nguyên ( đpcm)
Theo dạng bình phương ở Mẫu