Cho ABC cân tại A . Gọi M, N lần lượt là trung điểm của AB và AC.
a) Cho BC cm 6 . Tính độ đài MN.
b) Chứng minh tứ giác BMNC là hình thang cân.
c) Gọi H là trung điểm BC, Q là trung điểm BH , P là giao điểm của AH và MN. Chứng minh tứ giác QMPH là hình chữ nhật.
a. Vì M,N là trung điểm AB,AC nen MN là đtb tg ABC
Do đó \(MN=\dfrac{1}{2}BC=3\left(cm\right)\)
b. Vì MN là đtb nên MN//BC hay BMNC là hình thang
Mà \(\widehat{B}=\widehat{C}\left(\Delta ABC\text{ cân tại A}\right)\) nên BMNC là ht cân
c. Vì AH là trung tuyến của tam giác ABC cân nên cũng là đg cao
Do đó \(AH\bot BC\)
Mà Q,M là trung điểm BH và AB nên QM là đtb
Do đó \(QM//AH;QM=\dfrac{1}{2}AH\) hay \(QM//HP\)
Mà \(MN//BC\) nên \(MP//QH\)
Do đó QMPH là hbh
Mà \(AH\bot BC\) nên \(\widehat{PHQ}=90^0\)
Vậy QMPH là hcn