y+35%y+\(\frac{3}{7}\)y=99,6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+5}{3}=\frac{y-7}{4}\)
áp dụng t\c của dãy tỉ số bằng nhau ta có :
\(\frac{x+5}{3}=\frac{y-7}{4}=\frac{x+5+y-7}{3+4}=\frac{23-2}{7}=\frac{21}{7}=3\)
\(\Rightarrow\hept{\begin{cases}x=3\cdot3-5=4\\y=3\cdot4+7=19\end{cases}}\)
đặt \(k=\frac{x+5}{3}=\frac{y-7}{4}\)
\(\Rightarrow\hept{\begin{cases}x=3k-5\\y=4k+7\end{cases}}\)
\(\Rightarrow x+y=3k-5+4k+7=7k+2=23\)
\(\Rightarrow k=\frac{23-2}{7}=3\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=19\end{cases}}\)
các câu tiếp theo tương tự
Đặt \(\frac{x-3}{7}=\frac{y+2}{3}=\frac{z-1}{4}=k\)
\(\Rightarrow x=7k+3,y=3k-2,z=4k+1\)
Mà 3x+2y-5z=35
Hay 3(7k+3)+2(3k-2)-5(4k+1)=35
21k+9+6k-4-20k-5=35
7k=35
\(\Rightarrow k=5\)
\(\Rightarrow x=5\cdot7+3=38,y=3\cdot5-2=13,z=5\cdot4+1=21\)
\(A=\dfrac{x^{\dfrac{5}{4}}y+xy^{\dfrac{5}{4}}}{\sqrt[4]{x}+\sqrt[4]{y}}\\ =\dfrac{xy\left(x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}\right)}{x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}}\\ =xy\)
\(B=\left(\sqrt[7]{\dfrac{x}{y}\sqrt[5]{\dfrac{y}{x}}}\right)^{\dfrac{35}{4}}\\= \left(\sqrt[7]{\dfrac{x}{y}\cdot\left(\dfrac{x}{y}\right)^{-\dfrac{1}{5}}}\right)^{\dfrac{35}{4}}\\ =\left(\sqrt[7]{\left(\dfrac{x}{y}\right)^{\dfrac{4}{5}}}\right)^{\dfrac{35}{4}}\\ =\left[\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}}\right]^{\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}\cdot\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^1\\ =\dfrac{x}{y}\)
Quy đồng từng phân thức theo hệ số của x,y,z tương ứng rồi áp dụng tính chất của dảy tỉ số bằng nhau làm bình thường nha.
\(\frac{x-3}{7}\)= \(\frac{y+2}{3}\)=\(\frac{z-1}{4}\) = \(\frac{3x-9}{21}\)= \(\frac{2y+4}{6}\)= \(\frac{5z-5}{20}\)
=\(\frac{\left(3x+2y-5z\right)+\left(-9+4-5\right)}{21+6-20}\)
=\(\frac{35-10}{7}\)
=\(\frac{25}{7}\)
=>\(\frac{x-3}{7}\)=\(\frac{25}{7}\)=>x =28
\(\frac{y+2}{3}\)=\(\frac{25}{7}\)=>y=\(\frac{61}{7}\)
\(\frac{z-1}{4}\)=\(\frac{25}{7}\)=> z=\(\frac{107}{7}\)
Đặt \(\frac{1}{x}=a,\frac{1}{y}=b\)
Ta có hệ phương trình:
\(\left\{{}\begin{matrix}15a-7b=9\\4a+9b=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60a-28b=36\\60a+135b=525\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-163b=-489\\4a+9b=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\4a+9.3=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=3\\4a=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\a=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}=2\\\frac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất là (x;y) = (\(\frac{1}{2};\frac{1}{3}\))