Cho tam giác ABC. Biết Â=60 độ, B=50 độ. Kẻ phân giác AM(M E BC) của Â.
a,Tính C
b,Tính AMB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
2:
a: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-50^0}{2}=65^0\)
b: BC=6cm nên BM=3cm
=>AB=AC=5cm
3: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
hay ΔAEF cân tại A
`a)`Xét `\triangle ABC` có: `\hat{A}+\hat{B}+\hat{C}=180^o`
`=>40^o +\hat{B}+60^o =180^o`
`=>\hat{B}=80^o`
`b)` Vì `AM` là tia phân giác của `\hat{A}=>\hat{BAM}=\hat{CAM}=1/2\hat{A}=1/2 .40^o =20^o`
`@` Xét `\triangle ABM` có: `\hat{B}+\hat{BAM}+\hat{AMB}=180^o`
`=>80^o +20^o +\hat{AMB}=180^o`
`=>\hat{AMB}=80^o`
`@` Ta có: `\hat{AMB}+\hat{AMC}=180^o`
`=>80^o +\hat[AMC}=180^o`
`=>\hat{AMC}=100^o`
Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{ACB}=180^0-70^0-60^0=50^0\)
AM là phân giác của góc BAC
=>\(\widehat{BAM}=\widehat{CAM}=\dfrac{1}{2}\cdot\widehat{BAC}=\dfrac{1}{2}\cdot70^0=35^0\)
Xét ΔAMC có \(\widehat{AMC}+\widehat{C}+\widehat{CAM}=180^0\)
=>\(\widehat{AMC}+35^0+60^0=180^0\)
=>\(\widehat{AMC}=85^0\)
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EaD
=>ΔBAD=ΔEAD
b: ΔBAD=ΔEAD
=>AB=AE
=>ΔABE cân tại A
mà góc BAE=60 độ
nên ΔABE đều
\(a,\widehat{C}=180^0-\widehat{A}-\widehat{B}=70^0\\ b,\widehat{BAM}=\dfrac{1}{2}\widehat{A}=30^0\left(AM\text{ là p/g }\widehat{BAC}\right)\\ \Rightarrow\widehat{AMB}=180^0-\widehat{BAM}-\widehat{B}=100^0\)