K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

Câu hỏi của kakemuiki - Toán lớp 7 - Học toán với OnlineMath

a: Xét ΔMHA vuông tại H và ΔMKB vuông tại K có

MA=MB

\(\widehat{MAH}=\widehat{MBK}\)(hai góc so le trong, AH//BK)

Do đó: ΔMHA=ΔMKB

=>MH=MK

b: Ta có: ΔMHA=ΔMKB

=>\(\widehat{HMA}=\widehat{KMB}\)

mà \(\widehat{KMB}+\widehat{KMA}=180^0\)(hai góc kề bù)

nên \(\widehat{HMA}+\widehat{KMA}=180^0\)

=>\(\widehat{HMK}=180^0\)

=>H,M,K thẳng hàng

15 tháng 7 2016

mình cần rất gấp

14 tháng 8 2021

chệu tự làm hoặc hỏi gia sư quanda

24 tháng 2 2020

A B C O M' M N N'

a) +) Xét \(\Delta\)AM'B và \(\Delta\)BNA  có;

^M'AB = ^NBA = 90o 

AB chung

AM' = BN  ( = AC)

=> \(\Delta\)AM'B = \(\Delta\)BNA  

=> AN = BM'

+) Vì AM' = ABN ; AM = BN' ( = BC )

=> AM = BN'

^MAB = ^N'BA = 90o 

=> \(\Delta\)AMB = \(\Delta\)BN'A 

=> AN' = BM 

+) Xét \(\Delta\)AMC và \(\Delta\)BCN có:
AM = BC 

BN = AC 

^MAC = ^CBN ( = 90o )

=> \(\Delta\)AMC = \(\Delta\)BCN 

=> MC = NC 

b)  \(\Delta\)AM'B = \(\Delta\)BNA   ( chứng minh ở a)

=> ^M'BA = ^NAB mà  hai góc này ở vị trí so le trong 

=> AN // BM'

\(\Delta\)AMB = \(\Delta\)BN'A 

=> ^MBA = ^N'AB mà hai góc này ở vị trí so le trong 

=> MB // AN'

c) Gọi O là trung điểm của AB 

Xét \(\Delta\)OAM và \(\Delta\)OBN' có:

OA = OB 

^OAM = ^OBN' 

AM  = BN' 

=> \(\Delta\)OAM = \(\Delta\)OBN'  => ^AOM = ^BON'  mà ^AOM + ^MOB = 180o => ^BON' + ^MOB = 180o => MON' = 180o 

=> M; O; N' thẳng hàng (1)

Tương tự chứng minh được:

\(\Delta\)OAM' = \(\Delta\)OBN 

=> M'; O; N thẳng hàng (2)

Từ (1); (2) => MN' và M'N cắt nhau tại điểm O là trung điểm của AB

4 tháng 3 2021

Làm sao Nguyễn Linh Chi vẽ được hình như vậy chia sẻ liên kết cho mk vs ạ!

30 tháng 1 2020

vào link dưới đây:

https://olm.vn/hoi-dap/detail/63073899634.html

22 tháng 9 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Theo giả thiết ta có M và N là hai điểm di động lần lượt trên hai tia Ax và By sao cho AM + BN = MN.

a) Kéo dài MA một đoạn AP = BN, ta có MP = MN và OP = ON.

Do đó ΔOMP = ΔOMN (c.c.c)

⇒ OA = OH nên OH = a.

Ta suy ra HM = AM và HN = BN.

b) Gọi M’ là hình chiếu vuông góc của điểm M trên mặt phẳng (Bx’, By) ta có:

HK // MM’ với K ∈ NM’.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó đối với tam giác BNM’ đường thẳng BK là phân giác của góc (x'By) .

c) Gọi (β) là mặt phẳng (AB, BK). Vì HK // AB nên HK nằm trong mặt phẳng (β) và do đó H thuộc mặt phẳng (β). Trong mặt phẳng (β) ta có OH = a. Vậy điểm H luôn luôn nằm trên đường tròn cố định, đường kính AB và nằm trong mặt phẳng cố định (β) = (AB, BK)