Cho tam giác ABC cân tại A (AB > BC) . Trên tia đối của tia CA llấy điểm D sao cho CD = CA . Kẻ AH vuông góc với BC tại H . Kẻ Điều kiện vuông góc với đường thẳng BC tại K .Bạn chỉ cần vẽ hình hộ mình thôi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b: Xet ΔAHC vuông tại H và ΔDKC vuông tại K có
CA=CD
góc ACH=góc DCK
=>ΔAHC=ΔDKC
=>KC=HC=1/2BC
Nếu BAC = 60 độ với tam giác ABC cân nữa thì thành tam giác đều rồi?
Đâu có AB > BC được?
a: ta có: \(\widehat{KCE}=\widehat{ACB}\)(hai góc đối đỉnh)
\(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
Do đó: \(\widehat{KCE}=\widehat{ABC}\)
Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
BD=CE
\(\widehat{DBH}=\widehat{ECK}\)
Do đó: ΔDHB=ΔEKC
=>BH=CK
a) Xét ∆ vuông ABC và ∆ vuông AED ta có :
AB = AD (gt)
AC = AD (gt)
=> ∆ABC = ∆AED ( 2 cgv)
=> BD = DE
b) Xét ∆ABD có :
BAC = 90°
=> AD\(\perp\)AE
Mà AB = AD (gt)
=> ∆ABD vuông cân tại A
=> BDC = 45°
Chứng minh tương tự ta có :
BCE = 45°
=> BDC = BCE = 45°
Mà 2 góc này ở vị trí so le trong
=> BD//CE