K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

Bài toán tổng quát:

Với mọi n\(\in\)N* ta có:  \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{n\left(n^2-1\right)}=\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

Áp dụng vào bài toán:

\(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+...+\frac{1}{2004^3}< \frac{1}{4.5.6}+\frac{1}{5.6.7}+\frac{1}{6.7.8}+...+\frac{1}{2003.2004.2005}\)

mà \(\frac{1}{4.5.6}+\frac{1}{5.6.7}+\frac{1}{6.7.8}+...+\frac{1}{2003.2004.2005}\)

\(=\frac{1}{2}\left(\frac{2}{4.5.6}+\frac{2}{5.6.7}+\frac{2}{6.7.8}...+\frac{2}{2003.2004.2005}\right)\)

\(=\frac{1}{2}\left(\frac{1}{4.5}-\frac{1}{5.6}+\frac{1}{5.6}-\frac{1}{6.7}+\frac{1}{6.7}-\frac{1}{7.8}...+\frac{1}{2003.2004}-\frac{1}{2004.2005}\right)\)

\(=\frac{1}{2}\left(\frac{1}{4.5}-\frac{1}{2003.2004}\right)=\frac{1}{40}-\frac{1}{2.2003.2004}< \frac{1}{40}\)

=>\(\frac{1}{3.4.5}+\frac{1}{4.5.6}+\frac{1}{5.6.7}+...+\frac{1}{2002.2003.2004}< \frac{1}{40}\)

3 tháng 4 2017

\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{43\cdot46}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}=1-\frac{1}{46}< 1\)

\(\left(\frac{3}{a\cdot\left(a+3\right)}=\frac{a+3-3}{a\cdot\left(a+3\right)}=\frac{1}{a}-\frac{1}{a+3}\right)\)

3 tháng 4 2017

\(S=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{43\times46}\)

\(3S=3-\frac{3}{4}+\frac{3}{4}-\frac{3}{7}+...+\frac{3}{43}-\frac{3}{46}\)

\(3S=3-\frac{3}{46}\)

\(3S=\frac{135}{46}\)

\(S=\frac{45}{46}< 1\)

Vậy ra có điều phải chứng minh

14 tháng 3 2017

kho qua

Ta thấy:

1/3 < 1/2 = 1 - 1/2 
1/7 = 1/(3x2 + 1) < 1/(3x2) = 1/2 - 1/3 
1/13 = 1/(3x4 + 1) < 1/(3x4) = 1/3 - 1/4 
1/21 = 1/(4x5 + 1) < 1/(4x5) = 1/4 - 1/5 
.......................................... 
.......................................... 
1/73 = 1/(8x9 + 1) < 1/(8x9) = 1/8 - 1/9 
.......................................... 
Cộng tất cả lại : 
1/3 + 1/7 + 1/13 + 1/21 +...+ 1/73 + ... < (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + (1/4 - 1/5) + ....+ (1/8 - 1/9) + ...< 1

25 tháng 7 2016

Đặt \(A=\frac{1}{3}+\frac{1}{7}+\frac{1}{13}+.....+\frac{1}{91}\)

Ta có: \(A< \frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{90}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{9.10}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow A< 1-\frac{1}{10}\)

\(\Rightarrow A< \frac{9}{10}\)

Vì \(A< \frac{9}{10}< 1\Rightarrow A< 1\RightarrowĐPCM\)

A=1/2^2+1/3^2+....+1/1009^2

2A=2/2^2+2/3^2+...+2/1009^2

Ta có : (x-1).(x+1)=(x-1).x+x-1=x^2-x+x-1=x^2-1<x^2

2A<2/1.3+2/3.5+2/5.7+...+2/1008.10010

2A<1-1/3+1/3-1/5+...+1/1008-1/1010

2A<1-1/1010

2A<1009/1010<1<3/2

2A<3/2

A<3/4

ĐPCM

Nhớ cho mình nha!