Bài 3:Cho tam giác ABCcó ba góc nhọn, AB < AC. Qua trung điểm Dcủa cạnh BC kẻđường thẳng vuông góc với tia phân giác của góc BACcắt các đường thẳng ABvà AClần lượt tại Hvà K. a) Chứng minh rằng: HAKcân.b) Chứng minh rằng: BH = CK.c) Tính độdài các đoạn thẳng AHvà BH, biết AB= 9cm, AC= 12cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: gọi giao của tia phân giác góc A với HK là E
Xét ΔAHK có
AE vừa là đường cao, vừa là phân giác
=>ΔAHK cân tại A
b: ΔAHK cân tại A
=>góc BHI=góc AKH
=>góc BHI=góc BIH
=>ΔBIH cân tại B
Chẳng hiểu tại sao Mình chẳng thấy gì ở bài làm của cô Chi mà mình vẫn cứ k đúng ???
a, Gọi D vuông góc với phân giác của BAC tại điểm O
Xét △ADH và △ADK cùng vuông tại D
Có: HAD = KAD (gt)
=> △ADH = △ADK (cgv-gnk)
=> AH = AK (2 cạnh tương ứng)
=> △AHK cân tại A
b, Vẽ BI // CK (I HK)
=> AKH = BIH (2 góc đồng vị)
Mà AHK = AKH (△AHK cân tại A)
=> BIH = AHK
=> BIH = BHI
=> △BHI cân tại B
=> BH = BI
Xét △OBI và △OCK
Có: BOI = COK (2 góc đối đỉnh)
OB = OC (gt)
OBI = OCK (BI // CK)
=> △OBI = △OCK (g.c.g)
=> BI = CK (2 cạnh tương ứng)
Mà BH = BI (cmt)
=> BH = CK
c, Ta có: AH = AB + BH , AK = AC - KC
=> AH + AK = AB + BH + AC - KC
=> AH + AH = (AB + AC) + (BH - KC) (AK = AH)
=> 2AH = AB + AC (BH = KC => BH - KC = 0)
=> AH = (AB + AC) : 2 = (9 + 12) : 2 = 10,5 (cm)
=> BH = AH - AB = 10,5 - 9 = 1,5 (cm)
a: Xét ΔABH và ΔKBH có
BA=BK
\(\widehat{ABH}=\widehat{KBH}\)
BH chung
Do đó: ΔABH=ΔKBH
Xét ΔBAI và ΔBKI có
BA=BK
\(\widehat{ABI}=\widehat{KBI}\)
BI chung
Do đó: ΔBAI=ΔBKI
Suy ra: IA=IK
mà BA=BK
nên BI là đường trung trực của AK
=>BI vuông góc với AK
b: Xét ΔNAK có
NH là đường cao
NH là đường trung tuyến
Do đó:ΔNAK cân tại N
mà NI là đường cao
nên NI là phân giác của góc ANK
a: Xét ΔMHC và ΔMKC có
CH=CK
\(\widehat{HCM}=\widehat{KCM}\)
CM chung
Do đó: ΔMHC=ΔMKC
Suy ra: MH=MK
a) Gọi giao điểm của tia phân giác góc A với HK là F
Xét ΔAHF vuông tại F và ΔAKF vuông tại F có
AF chung
\(\widehat{HAF}=\widehat{KAF}\)(AF là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHF=ΔAKF(cạnh góc vuông-góc nhọn kề)
Suy ra: AH=AK(hai cạnh tương ứng)
Xét ΔHAK có AH=AK(cmt)
nên ΔHAK cân tại A(Định nghĩa tam giác cân)