K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2016

xét 2 tam giác HBA và ABC 

H là góc chung

gC=gHAB

=>2 tam giác đồng dạng

\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB.AB=BH.BC\Rightarrow AB^2=BH.BC\)

a: \(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

BH=4^2/5=3,2cm

b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: ΔBAC đồng dạng với ΔBHA

=>BA/BH=BC/BA

=>BA^2=BH*BC

a: \(CB=\sqrt{4^2+3^2}=5\left(cm\right)\)

AH=4*3/5=2,4cm

BH=4^2/5=3,2cm

CD là phân giác

=>AD/AC=DB/BC

=>AD/3=DB/5=(AD+DB)/(3+5)=4/8=0,5

=>AD=1,5cm

b: Xet ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: Xét ΔBAC vuông tại A có AH là đường cao

nên AB^2=BH*BC

20 tháng 11 2023

Câu 1: D

Câu 2: B

Câu 3: A

28 tháng 12 2020

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=CH^2+AH^2\)

\(\Leftrightarrow AH^2=AC^2-CH^2=20^2-16^2=144\)

hay AH=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{16}=9\left(cm\right)\)

Ta có: BC=BH+CH(H nằm giữa B và C)

nên BC=9+16=25(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=25^2-20^2=225\)

hay AB=15(cm)

Vậy: AB=15cm; AH=12cm; BC=25cm; BH=9cm

20 tháng 11 2023

Câu 1: Cả 4 câu đều đúng

Câu 2:

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=3^2+4^2=25\)

=>BC=5

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot5=3\cdot4=12\)

=>AH=2,4

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔBAC đồng dạng với ΔBHA

=>BA/BH=BC/BA

=>BA^2=BH*BC

c: Xét ΔHAC vuông tại H và ΔHBA vuông tại H có

góc HAC=góc HBA

=>ΔHAC đồng dạng với ΔHBA

=>HA/HB=HC/HA

=>HA^2=HB*HC

9 tháng 8 2023

em cảm ơn anh rất nhiều ạ

28 tháng 12 2020

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=BH^2+CH^2\)

\(\Leftrightarrow AC^2=5^2+12^2=169\)

hay AC=13(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{5}=28.8\left(cm\right)\)

Ta có: BC=HB+HC(H nằm giữa B và C)

nên BC=28,8+5=33,8(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=33.8^2-13^2=973.44\)

hay \(AB=31.2cm\)

Vậy: AC=13cm; AB=31,2cm; BC=33,8cm; BH=28,8cm

28 tháng 12 2020

Áp dụng định lí Pytago vào ΔBAH vuông tại H, ta được: 

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow HB^2=AB^2-AH^2=30^2-24^2=324\)

hay HB=18(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{24^2}{18}=32\left(cm\right)\)

Ta có: BC=HB+HC(H nằm giữa B và C)

nên BC=18+32=50(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\LeftrightarrowÁC^2=BC^2-AB^2=50^2-30^2=1600\)

hay AC=40cm

Vậy: AC=40cm; CH=32cm; BC=50cm; BH=18cm

a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)

=>\(BC^2=4^2+7,5^2=72,25\)

=>\(BC=\sqrt{72,25}=8,5\)

Xét ΔABC vuông tại A có \(cotB=\dfrac{BA}{AC}\)

=>\(cotB=\dfrac{4}{7,5}=\dfrac{8}{15}\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

Xét ΔABH vuông tại H có \(cotB=\dfrac{BH}{AH}\)

=>\(\dfrac{BH}{AH}=\dfrac{8}{15}\)

=>\(BH=\dfrac{8}{15}\cdot AH\)

\(AB^2=BH\cdot BC=\dfrac{8}{15}\cdot AH\cdot BC\)