S = 5 + 5 mũ 2 + 5 mũ 3 + ... + 5 mũ 2004
chứng minh s chia hết cho 65
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)
= (5+52+..........+52003).126 ->S chia hết cho 126
2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)
= (7+...............+71997).50-> chia hết cho 5
= 7(1+72+.......+71998) -> chia hết cho 7
-> chia hết cho 35
\(S=5+5^2+5^3+...+5^{1992}\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{1991}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{1991}.6=6\left(5+5^3+...+5^{1991}\right)⋮6\)
a) \(S=1+5+5^2+5^3+...+5^{28}\)
\(S=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{27}+5^{28}\right)\)
\(S=1\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)
\(S=\left(1+5^2+...+5^{27}\right).6⋮3\left(dpcm\right)\)
b) \(S=1+5+5^2+5^3+...+5^{28}\)
\(\Rightarrow5S=5+5^2+5^3+5^4+...+5^{29}\)
\(\Rightarrow5S-S=\left(5+5^2+5^3+5^4+...+5^{29}\right)-\left(1+5+5^2+5^3+...+5^{28}\right)\)
\(\Rightarrow4S=5^{29}-1\)
\(\Rightarrow4S+1=5^{29}-1+1\)
\(\Rightarrow4S=5^{29}=5^n\)
\(\Rightarrow n=29\)
a) \(S=1+5+5^2+5^3+...+5^{28}\)
\(\Rightarrow S=\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)
\(\Rightarrow S=6+5^2.6+...+5^{27}.6\)
\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮6\)
\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮3\)
\(\Rightarrow dpcm\)
b) Bạn xem lại đề
a,Tổng trên có 96 số hạng, nhóm 4 số thành 1 nhóm ta được 24 nhóm
S = 5 + 52 + 53 +.....+ 596
S = (5+52+53+54)+(55+56+57+58)+.....+(593+594+595+596)
S = 5(1+5+52+53)+55(1+5+52+53)+....+593(1+5+52+53)
S = 5.156 + 55.156 +.....+ 593.156
S = 156.(5+55+....+593) chia hết cho 26 (vì 156 chia hết cho 26)
Ta có: 5+55+.....+593 có 24 số hạng có tận cùng là 5
(vì 5 nhân lên lũy thừa bao nhiêu cũng cho 1 số có tận cùng là 5)
=> 5+55+...+593 có tận cùng là (...5) + (...5) +......+ (...5) gồm 24 số
=> 5+55+...+593 có tận cùng là 5.24 = ...0
=> S = 156.(5+55+...+593)
=> S = 156.(...0)
=> S = (...0)
=> Chữ số tận cùng của S là 0
\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\)
\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\)
\(S=7.\left(2+2^4+...+2^{28}\right)\)
⇒ \(S⋮7\) ( điều phải chứng minh )
S=5+5^2+5^3+...+5^2004
S=(5+5^2+5^3+5^4)+(5^6+5^7+5^8+5^9)+...+(+5^2001+5^2002+5^2003+5^2004)
S=1(5+5^2+5^3+5^4)+5^5(5+5^2+5^3+5^4)+...+5^2000(5+5^2+5^3+5^4)
S=1*780+5^5*780+...+5^2000*780
S=780(1+5^5+..+5^2000)
vì 780 chia hết cho 65 nên S chia hết cho 65
k mik nha