Tính tổng S= 1 +2 +5 + 14 +...+ \(\frac{3^{n+1}}{2}\) ( n thuộc Z+)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+5+14+....+\frac{3^{x-1}+1}{2}\)
\(=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+.....+\frac{3^{x-1}+1}{2}\)
\(=\frac{\left(3^0+1\right)+\left(3^1+1\right)+\left(3^2+1\right)+.....+\left(3^{x-1}+1\right)}{2}\)
\(=\frac{\left(1+3+3^2+.....+3^{x-1}\right)+x}{2}\)
Đặt \(A=1+3+3^2+....+3^{x-1}\)
\(3A-A=\left(3+3^2+....+3^x\right)-\left(1+3+....+3^{x-1}\right)\)
\(2A=3^x-1\Rightarrow A=\frac{3^x-1}{2}\)
\(\Rightarrow S=\frac{\frac{3^x-1}{2}+x}{2}\)
S=(3^0+1/2)+(3^1/2+1/2)+(3^2/2+1/2)+....+(3^n-1/2+1/2)
=n*1/2+1/2*(3^0+3^1+3^2+...+3^n-1)
=n^2/2+(3^n-1/4)=3^n+2-1/4
~~~~~~~~~~~~~~~~~~~~~
\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in N\right)\)
\(2S=2+4+10+28+...+\left(3^{n-1}+1\right)=S_1\)
\(2S=\left[1+1+1+...+n\right]+\left[1+3+9+...+3^{n-1}\right]\)
\(S_1=1+1+1+...+n=n\)
\(S_2=3+9+...+3^n\)
\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\frac{3^n-1}{2}\)
\(S=\frac{S_1+S_2}{2}=\frac{n+\frac{3^n-1}{2}}{2}=\frac{3^n+2n-1}{4}\)