K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔABD\(\sim\)ΔACE(g-g)

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔABD∼ΔACE(g-g)

b) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có 

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔEHB∼ΔDHC(g-g)

Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BH\cdot HD=CH\cdot HE\)(đpcm)

17 tháng 12 2023

Ta có: ΔEAH vuông tại E

mà EI là đường trung tuyến

nên IE=IH

=>ΔIEH cân tại I

=>\(\widehat{IHE}=\widehat{IEH}\)

mà \(\widehat{IHE}=\widehat{BHD}\)(hai góc đối đỉnh)

và \(\widehat{BHD}=\widehat{BCE}\left(=90^0-\widehat{EBC}\right)\)

 nên \(\widehat{IEH}=\widehat{BCE}\)

Ta có: ΔEBC vuông tại E

mà EO là đường trung tuyến

nên OE=OB

=>ΔOEB cân tại O

=>\(\widehat{OEB}=\widehat{OBE}\)

Ta có: \(\widehat{IEO}=\widehat{IEH}+\widehat{OEH}\)

\(=\widehat{EBC}+\widehat{ECB}=90^0\)

=>ΔIEO vuông tại E

Ta có: ΔAFH vuông tại F

mà FI là đường trung tuyến

nên FI=IH

=>FI=IE

=>I nằm trên đường trung trực của FE(1)

Ta có: ΔBFC vuông tại F

mà FO là đường trung tuyến

nên \(FO=\dfrac{BC}{2}\)

mà EO=BC/2

nên FO=EO

=>O nằm trên đường trung trực của EF(2)

Từ (1) và (2) suy ra IO là đường trung trực của EF

=>IO\(\perp\)EF tại K và K là trung điểm của FE

Xét ΔIEO vuông tại E có EK là đường cao

nên \(IK\cdot IO=IE^2\)

=>\(IK\cdot IO=\left(\dfrac{1}{2}AH\right)^2=\dfrac{1}{4}AH^2\)

=>\(AH^2=4\cdot IK\cdot IO\)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC

=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

 

a: Xét ΔABC có

BD là đường cao ứng với cạnh AC

CE là đường cao ứng với cạnh AB

BD cắt CE tại H 

Do đó: H là trực tâm của ΔBAC

hay AH\(\perp\)BC tại K

Xét ΔBKH vuông tại K và ΔBDC vuông tại D có

\(\widehat{HBK}\) chung

Do đó: ΔBKH\(\sim\)ΔBDC

Suy ra: \(\dfrac{BK}{BD}=\dfrac{BH}{BC}\)

hay \(BH\cdot BD=BK\cdot BC\)