K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

a) A thuộc Z
=> n + 1 chia hết cho n - 3

n - 3 + 4 chia hết cho n - 3

4 chia hết cho  n - 3

n - 3 thuộc U(4) = {-4 ; -2 ; -1 ; 1 ; 2; 4}

n thuộc {-1 ; 1 ; 2 ; 4 ; 5 ; 7}

6 tháng 7 2016

\(A=\frac{n-5}{n+1}\in Z\)

\(\Rightarrow n-5⋮n+1\)

\(\Rightarrow n+1-6⋮n+1\)

\(\Rightarrow6⋮n-1\)

\(\Rightarrow n-1\inƯ\left(6\right)\)

\(\Rightarrow n-1\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)

6 tháng 7 2016

Theo mình là :

\(\frac{n-5}{n+1}=\frac{n-6+1}{n+1}=\frac{-6}{n+1}\)

=> n + 1 \(\in\) Ư (-6) = {1;-1;2;-2;3;-3;6;-6}

=> n = { 0;-2;1;-3;2;-4;5;-7}

Mà n \(\ne\) 1 => n \(\in\) {0;-2;-3;2;-4;5;-7}

a. Để A là số nguyên=> n = {0;-3;2;-4;5;-7}

b Để A là tổi giản => n = -2

a) Để A có giá trị nguyên thì \(n-5⋮n+1\)

\(\Leftrightarrow n+1-6⋮n+1\)

mà \(n+1⋮n+1\)

nên \(-6⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(-6\right)\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

b)

Ta có: \(A=\dfrac{n-5}{n+1}\)

\(=\dfrac{n+1-6}{n+1}\)

\(=1-\dfrac{6}{n+1}\)

Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1

\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)

\(\Leftrightarrow n+1⋮̸6\)

\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)

\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)

Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản

29 tháng 2 2016

a) để A nguyên

=>n-5 chia hết cho n+1

=>n+1-6 chia hết cho n+1

=>6 chia hết cho n-1

=>n-1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}

=>n thuộc{0;2;-1;3;-2;4;-5;7}

26 tháng 5 2016

\(A=\frac{n-5}{n+1}\)

Để A có giá trị nguyên 

=> n-5 chia hết n+1 

=> (n+1)-6 chia  hết n+1

=> n+1 \(\in\)Ư (6) = \(\left(\text{±}1;\text{±}2;\text{±}3\text{;±}6\right)\)

Ta có bảng : 

n+11-12-23-36-6
n0-21-32-45-7

Câu b tự làm

26 tháng 5 2016

a, Để a nguyên thì n-5 chia hết cho n+1

suy ra n-1+6 chia hết cho n-1

Do n-1 chia hết cho n-1 nên 6 chia hết cho n-1

Mà n thuộc Z nên n-1 thuộc Z suy ra n-1 thuộc {1;-1;2;-2;3;-3;6;-6}

suy ra n thuộc {2;0;3;-1;4;-2;7;-5}

Mà n khác -1 nên n thuộc {2;0;3;4;-2;7;-5}

b, Gọi d là ước nguyên tố chung của n-5 và n+1

Suy ra n-5 chia hết cho d, n+1 chia hết cho d

Suy ra (n+1)-(n-5) chia hết cho d

suy ra n+1-n+5 chia hết cho d hay 6 chia hết cho d

Do d nguyên tố nên d thuộc {2;3}

Với d=2 thì n-5 và n+1 chia hết cho 2, n=2k+1(k thuộc Z)

Với d=3 thif n-5 và n+1 chia hết cho 3, n=3k+2(k thuộc Z)

Vây với n khác dạng 2k+1 và 3k+2 (k thuộc Z) thì A tối giản

12 tháng 5 2021

A=n+1/n+3

A=n-3+4/n-3

A=1+4/n+3

để A tối giản thì 4/n+3 phải tối giản 

mà n có 1 chữ số nên 

suy ra n thuộc 2;4;6;8

mà n-3 phải khác 1;-1

nên n=6;8

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#