Cho P = x8-x2+x-x+1 với mọi x \(\in\)R
CMR : p luôn luôn nhận giá trị dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
a: A=5x^2y-5x^2y-3xy+2xy+xy+x^4y^2+1+x^2
=x^4y^2+x^2+1
Khi x=-1 và y=1 thì A=(-1)^4*1^2+(-1)^2+1=3
b: A=x^2(x^2y^2+1)+1>=1>0 với mọi x,y
=>A luôn dương với mọi x,y
\(x^2+x+3=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\) luôn dương với mọi x
------------------
\(-2x^2+3x-8=2\left(-x^2+\frac{3}{2}x-4\right)=2\left[-x^2+2.\frac{3}{4}.x-\frac{9}{16}-\frac{55}{16}\right]=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\)
\(=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\le-\frac{55}{15}< 0\) luôn âm với mọi x
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
a) Ta có: \(C=\left(x^2-1\right)\cdot\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}+1\right)\)
\(=\left(x^2-1\right)\cdot\left(\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}+\dfrac{x^2-1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\left(x^2-1\right)\cdot\dfrac{x+1-x+1+x^2-1}{\left(x+1\right)\left(x-1\right)}\)
\(=x^2-1\)
`x^4+2x^2+1`
`=(x^2)^2 + 2.x^2 .1 + 1^2`
`=(x^2+1)^2 > 0 forall x`.
+x-x=0 (loại x)
x^ 8>= 0 và x^2 >=0 (với mọi x) => x^8-x^2+1 >=1 (với mọi x thuộc R) -> đpcm
+x-x=0 (loại x)
x^ 8>= 0 và x^2 >=0 (với mọi x) => x^8-x^2+1 >=1 (với mọi x thuộc R) -> đpcm