CMR: 3/5<S<4/5
biets S=1/31+1/32+...+1/60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
`5S=5(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`
`5S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)`
`=>5S-S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)-(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`
`4S=1/5+1/(5^2)+1/(5^3)+1/(5^4)+...+1/(5^99) -99/(5^100)`
`20S=5(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`
`20S=1+1/5+1/(5^2)+....+1/(5^98)-99/(5^99)`
`=>20S-4S=(1+1/5+1/(5^2)+...+1/(5^98)-99/(5^99))-(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`
`=>16S=1-99/(5^99)-1/(5^99)-99/(5^100)`
Vì `-99/(5^99)-1/(5^99)-99/(5^100)<0=>1-99/(5^99)-1/(5^99)-99/(5^100)<1`
`=>S<1/16`
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
b2
\(A=16^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)\)
\(=2^{13}.4.33\)
\(=2^{13}.132⋮132\)
Vậy S chia hết cho 132
Có \(16^5⋮4\)
\(2^{15}⋮4\)
\(\Rightarrow A⋮4\)(1)
Có \(16^5=\left(2^4\right)^5=2^{4.5}=2^{20}\)
Thay vào A\(\Rightarrow A=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.31\)
\(\Rightarrow A⋮33\)(2)\
Từ (1) và (2)\(\Rightarrow A⋮132\)
S = 5 + 52 + 53 + ....... + 52006
a) Tính S
S = 5 + 52 + 53 + ....... + 52006
5S = 5(5 + 52 + 53 + ....... + 52006)
5S = 52 + 53 + 54 + ....... + 52007
4S = 5S - S
4S = (52 + 53 + 54 + ....... + 52007) - (5 + 52 + 53 + ....... + 52006)
4S = 52007 - 5
S = 4S : 4
S = (52007 - 5) : 4
b) CMR S ⋮ 126
S = 5 + 52 + 53 + ....... + 52006
S = (5 + 54) + (52 + 55) + .... + (52003 + 52006)
S = 5(1 + 53) + 52(1 + 53) + .... + 52003(1 + 53)
S = 5.126 + 52.126 + .... + 52003.126
S = 126(5 + 52 + .... + 52003) ⋮ 126
S ⋮ 126
\(S=\frac{5}{20}+\frac{5}{21}+..........+\frac{5}{49}\)
\(=5\left(\frac{1}{20}+\frac{1}{21}+.......+\frac{1}{49}\right)\)
Mà \(\frac{1}{20}>\frac{1}{49};\frac{1}{21}>\frac{1}{49};.........;\frac{1}{49}=\frac{1}{49}\)
\(\Leftrightarrow5\left(\frac{1}{20}+\frac{1}{21}+.....+\frac{1}{49}\right)>5\left(\frac{1}{49}+\frac{1}{49}+.......+\frac{1}{49}\right)\)
\(\Leftrightarrow S>5.\frac{30}{49}\)
\(\Leftrightarrow S>3\frac{3}{49}\)
\(\Leftrightarrow S>3\left(1\right)\)
Lại có :
\(\frac{1}{20}=\frac{1}{20};\frac{1}{21}< \frac{1}{20};.......;\frac{1}{49}< \frac{1}{20}\)
\(\Leftrightarrow S=5\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\right)< 5\left(\frac{1}{20}+\frac{1}{20}+....+\frac{1}{20}\right)\)
\(\Leftrightarrow S< 5.\frac{30}{20}=7\frac{1}{2}\)
\(\Leftrightarrow S< 8\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow3< S< 8\)