Cho\(\frac{5k+3}{2k+2}\)là biểu thức có giá trị nguyên dương
Chứng minh \(\frac{5k+3}{2k+2}⋮2k\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoàng Lê Bảo NgọcTrần Việt LinhNguyễn Huy TúNguyễn Huy ThắngSilver bulletPhương AnĐinh Tuấn ViệtNguyễn Thế BảoNguyễn Thị Anh
=(7k+3+88k)(60k^3+\(\frac{4}{k}\))
=(95k+3)(60k^3+\(\frac{4}{k}\))
phần còn lại tự lm nha
bai toan sai o cho 9k la so tien mat nen 9k +9k +9k -25 = 2k la dung roi
Áp dụng t/c của dãy tỉ số bằng nhau ta có \(\frac{\left(a^{2k}+b^{2k}\right)}{c^{2k}+d^{2k}}=\frac{a^{2k}-b^{2k}}{c^{2k}-d^{2k}}=\frac{\left(a^{2k}+b^{2k}\right)+\left(a^{2k}-b^{2k}\right)}{\left(c^{2k}+d^{2k}\right)+\left(c^{2k}-d^{2k}\right)}=\frac{\left(a^{2k}+b^{2k}\right)-\left(a^{2k}-b^{2k}\right)}{\left(c^{2k}+d^{2k}\right)-\left(c^{2k}-d^{2k}\right)}\)
=> \(\frac{a^{2k}}{c^{2k}}=\frac{b^{2k}}{d^{2k}}\) => \(\left(\frac{a}{c}\right)^{2k}=\left(\frac{b}{d}\right)^{2k}\) => \(\frac{a}{c}=\frac{b}{d}\) hoặc \(\frac{a}{c}=-\frac{b}{d}\) ( do số mũ 2k chẵn)
=> \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{b}=-\frac{c}{d}\)
c) x2 + 9x = 10
x2 + 9x - 10 = 0
=> x2 - x + 10x - 10 = 0
=> x(x - 1) + 10(x - 1) = 0
=> (x + 10)(x - 1) = 0
=> \(\orbr{\begin{cases}x=-10\\x=1\end{cases}}\)
d) 2x2 + 9x = 35
=> 2x2 + 9x - 35 = 0
=> 2x2 + 14x - 5x - 35 = 0
=> 2x(x + 7) - 5(x + 7) = 0
=> (x + 7)(2x - 5) = 0
=> \(\orbr{\begin{cases}x=-7\\x=\frac{5}{3}\end{cases}}\)
(x2 - 2x - 1)2 - 5(x2 - 2x - 1) - 14 = 0
=> (x2 - 2x - 1)2 + 2(x2 - 2x - 1) - 7(x2 - 2x - 1) - 14 = 0
=> (x2 - 2x - 1)(x2 - 2x + 1) - 7(x2 - 2x + 1) = 0
=> (x2 - 2x + 1)(x2 - 2x - 8) = 0
=> (x - 1)2 (x - 4)(x + 2) = 0
=> x = 1 hoặc x = 4 hoặc x = -2
e) (2k2 + 5k + 1)2 - 12(2k2 + 5k + 1) + 32 = 0
=> (2k2 + 5x + 1)2 - 4(2k2 + 5k + 1) - 8(2k2 + 5k + 1) + 32 = 0
=> (2k2 + 5k + 1)(2k2 + 5k - 3) - 8(2k2 + 5k - 3) = 0
=> (2k2 + 5k - 3)(2k2 + 5k - 7) = 0
=> (2k2 + 6k - k - 3)(2k2 - 2x + 7k - 7) = 0
=> (k + 3)(2k - 1)(k - 1)(2k + 7) = 0
=> k = -3 hoặc k = 1/2 hoặc k = 1 hoặc k = -7/2
1.x2 + 6x = 0 < như này nhỉ ? >
⇔ x( x + 6 ) = 0
⇔ x = 0 hoặc x + 6 = 0
⇔ x = 0 hoặc x = -6
2. x2 - 25x + 250 = 0
⇔ ( x2 - 25x + 625/4 ) + 375/4 = 0
⇔ ( x - 25/2 )2 = -375/4 ( vô lí )
=> Phương trình vô nghiệm
3. x2 + 9x = 10
⇔ x2 + 9x - 10 = 0
⇔ x2 - x + 10x - 10 = 0
⇔ x( x - 1 ) + 10( x - 1 ) = 0
⇔ ( x - 1 )( x + 10 ) = 0
⇔ x - 1 = 0 hoặc x + 10 = 0
⇔ x = 1 hoặc x = -10
4. 2x2 + 9x = 35
⇔ 2x2 + 9x - 35 = 0
⇔ 2x2 + 14x - 5x - 35 = 0
⇔ 2x( x + 7 ) - 5( x + 7 ) = 0
⇔ ( x + 7 )( 2x - 5 ) = 0
⇔ x + 7 = 0 hoặc 2x - 5 = 0
⇔ x = -7 hoặc x = 5/2
5. ( x2 - 2x - 1 )2 - 5( x2 - 2x - 1 ) - 14 = 0
Đặt t = x2 - 2x - 1
bthuc ⇔ t2 - 5t - 14 = 0
⇔ t2 - 7t + 2t - 14 = 0
⇔ t( t - 7 ) + 2( t - 7 ) = 0
⇔ ( t - 7 )( t + 2 ) = 0
⇔ ( x2 - 2x - 1 - 7 )( x2 - 2x - 1 + 2 ) = 0
⇔ ( x2 - 4x + 2x - 8 )( x - 1 )2 = 0
⇔ ( x - 4 )( x + 2 )( x - 1 )2 = 0
⇔ x - 4 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0
⇔ x = 4 hoặc x = -2 hoặc x = 1
6. ( 2k2 + 5k + 1 )2 - 12( 2k2 + 5k + 1 ) + 32 = 0
Đặt t = 2k2 + 5k + 1
bthuc ⇔ t2 - 12t + 32 = 0
⇔ t2 - 8t - 4t + 32 = 0
⇔ t( t - 8 ) - 4( t - 8 ) = 0
⇔ ( t - 8 )( t - 4 ) = 0
⇔ ( 2k2 + 5k + 1 - 8 )( 2k2 + 5k + 1 - 4 ) = 0
⇔ ( 2k2 - 2k + 7k - 7 )( 2k2 - k + 6k - 3 ) = 0
⇔ ( k - 1 )( 2k + 7 )( 2k - 1 )( k + 3 ) = 0
⇔ k = 1 hoặc k = -7/2 hoặc k = 1/2 hoặc k = -3