Gọi M,N, P lần lượt là trung điểm AB, AD, SC. Xác định giao tuyến của mp(MNP) với các mặt của hình chóp.
MN giúp em với ạ, em xin cám ơn nhiều ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét hình thang ABCD có
M,N lần lượt là trung điểm của AB,CD
nên MN là đường trung bình
=>MN//AD//BC
=>MN//(SAD) và MN//(SBC)
b: Gọi giao của MN với BD là O
=>O thuộc (SBD) giao (MNP)
MP//SB
=>\(\left(SBD\right)\cap\left(MNP\right)=xy\left(O\in xy\right);\)xy//MP//SB
a: Xét (SAB) và (SCD) có
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
AB//CD
Do đó: \(\left(SAB\right)\cap\left(SCD\right)=xy;S\in xy\);xy//AB//CD
b: Trong mp(ABCD), gọi I là giao điểm của MN với AD
\(I\in AD\)
\(I\in MN\subset\left(MNP\right)\)
Do đó: \(I=AD\cap\left(MNP\right)\)
a) Ta có: MP cắt BC tại E mà BC thuộc (BCD)
Nên: E là giao điểm của đường thẳng MP với mặt phẳng (BCD).
b) Ta có: EN cắt CD tại Q mà EN thuộc (MNP)
Nên: Q là giao điểm của đường thẳng CD với mặt phẳng (MNP).
c) Ta có: P thuộc (MNP) và (ACD)
Q thuộc (MNP) và (ACD)
Nên PQ là giao tuyến của mặt phẳng (ACD) với mặt phẳng (MNP).
d) △ACN có: \(\dfrac{AP}{AC}=\dfrac{AG}{AN}=\dfrac{2}{3}\)
Suy ra: PG // CN
Do đó: △PIG đồng dạng với △NIC
Do đó: C, I, G thẳng hàng.
Cho hình chóp S.abcd đáy abcd là hình thang (ab//cd) điểm M thuộc SB
Tìm giao tuyến của mặt phẳng (MAD) và mặt phẳng (SBC)