K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

loading...loading...loading...

 

 

 

 

 

 

a: Xét ΔSAC có

O,M lần lượt là trung điểm của CA,CS

=>OM là đường trung bình của ΔSAC

=>OM//SA

SA//OM

\(OM\subset\left(MBD\right)\)

SA không thuộc mp(MBD)

Do đó: SA//(MBD)

b: Xét (OMD) và (SAD) có

\(D\in\left(OMD\right)\cap\left(SAD\right)\)

OM//SA

Do đó: (OMD) giao (SAD)=xy, xy đi qua D và xy//OM//SA

NV
22 tháng 12 2022

Qua S kẻ đường thẳng d song song AD (và BC)

Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC

\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)

29 tháng 8 2023

S A B C D M H K N O

a/

Ta có

\(S\in\left(SAD\right);S\in\left(SBC\right)\Rightarrow S\in d\) và d//AD//BC (Nếu 2 mp lần lượt chứa 2 đường thẳng // với nhau thì giao tuyến của chúng nếu có là đường thẳng // với 2 đường thẳng đã cho)

b/

Xét tg SAD có

MA=MD; HA=HS => MH là đường trung bình của tg SAD

=> MH//SD mà \(SD\in\left(SCD\right)\) => MH//(SCD) (1)

Xét tg SAB có

HA=HS; KS=KB => MH là đường trung bình của tg SAB

=> HK//AB mà AB//CD => HK//CD mà \(CD\in\left(SCD\right)\) => HK//(SCD) (2)

Từ (1) và (2) => (MHK)//(SCD) nên không có giao tuyến

c/

Gọi O là trung điểm BD, Nối MO cắt BC tại N

Xét tg ABD có

MA=MD; OB=OD => MO là đường trung bình của tg ABD

=> MO//AB; mà HK//AB (cmt) => MO//HK

=> M; O; H; K cùng thuộc mặt phẳng MKH 

\(\Rightarrow MO\in\left(MKH\right)\Rightarrow MN\in\left(MKH\right)\Rightarrow N\in\left(MKH\right)\)

Mà \(N\in BC\)

=> N là giao của BC với (MKH)

Ta có MO//HK => MN//HK => MHNK là hình thang

 

 

 

NV
23 tháng 10 2021

undefined

NV
23 tháng 10 2021

a.

Nối BN kéo dài cắt AD tại E

\(\left\{{}\begin{matrix}E\in\left(BMN\right)\\E\in\left(SAD\right)\end{matrix}\right.\) \(\Rightarrow E=\left(BMN\right)\cap\left(SAD\right)\)

\(\left\{{}\begin{matrix}M\in SA\in\left(SAD\right)\\M\in\left(BMN\right)\end{matrix}\right.\) \(\Rightarrow M=\left(BMN\right)\cap\left(SAD\right)\)

\(\Rightarrow EM=\left(BMN\right)\cap\left(SAD\right)\)

b.

Gọi F là giao điểm EM và SD

Trong mp (SCD), nối FN kéo dài cắt SC kéo dài tại G

\(\Rightarrow G=SC\cap\left(BMN\right)\)

9 tháng 12 2021

9 tháng 12 2021

21 tháng 10 2023

a: Chọn mp(SBD) có chứa BM

\(O\in BD\subset\left(SBD\right);O\in AC\subset\left(SAC\right)\)

Do đó: \(O\in\left(SBD\right)\cap\left(SAC\right)\)

mà \(S\in\left(SBD\right)\cap\left(SAC\right)\)

nên \(\left(SBD\right)\cap\left(SAC\right)=SO\)

Gọi E là giao điểm của SO với BM

=>E là giao điểm của BM với mp(SAC)

b: \(M\in SD\subset\left(SAD\right);M\in\left(MAC\right)\)

=>\(M\in\left(SAD\right)\cap\left(MAC\right)\)

mà \(A\in\left(MAC\right)\cap\left(SAD\right)\)

nên \(\left(MAC\right)\cap\left(SAD\right)=AM\)

27 tháng 10 2023

a: loading...

b: \(O\in AC\subset\left(SAC\right);M\in SC\subset\left(SAC\right)\)

Do đó: \(OM\subset\left(SAC\right)\)

c: Xét ΔCAS có

O,M lần lượt là trung điểm của CA,CS

=>OM là đường trung bình

=>OM//SA và OM=SA/2

OM//SA

\(SA\subset\left(SAD\right)\)

OM không nằm trong mp(SAD)

Do đó: OM//(SAD)

d: SA//MO

\(MO\subset\left(MBD\right)\)

SA không nằm trong mp(MBD)

Do đó: SA//(MBD)

e: Xét (OMD) và (SAD) có

OM//SA

\(D\in\left(OMD\right)\cap\left(SAD\right)\)

Do đó: (OMD) giao (SAD)=xy, xy đi qua D và xy//OM//SA