Bài 2: (4 điểm) Chochứng minh rằng:
a. | b. |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABEC là hình chữ nhật
Suy ra: BC=AM
`a,`
Xét $\Delta OAC$ và $\Delta ABC$ ta có `:`
`OA=OB(gt)`
\(\widehat{AOC}=\widehat{BOC}\) `( Oz` là tia phân giác \(\widehat{B}\) `)`
Chung `Oz`
`=>` $\Delta OAC$ `=` $\Delta ABC$ `(c.g.c)`
`=>` `{(\hat{OAC}=\hat{OBC} \text{( 2 góc tương ứng )} ),(AC=BC \text{ (2 cạnh tương ứng)}):}`
Từ `\hat{OAC}=\hat{OBC}`
`=>` `\hat{xAC}=\hat{yBC}` `(` kề bù với `2` góc bằng nhau `)`
`b,` Xem lại đề bài `: OC=OB?`
a: Xét ΔAEC và ΔBEF có
EA=EB
\(\widehat{AEC}=\widehat{BEF}\)
EC=EF
Do đó: ΔAEC=ΔBEF
b) Ta có: △ AEC và △ BEF ( chứng minh trên )
Mà lại có: \(\widehat{ACE}=\widehat{BFE}\) ( 2 góc tương ứng )
Ta lại thấy hai góc này ở vị trí so le trong
Suy ra: AC // BF
a) Xét \(\Delta AEB\) và \(\Delta ADC:\)
AE = AD (gt).
\(\widehat{A}chung.\)
AB = AC \((\Delta ABC\) cân tại A).
\(\Rightarrow\Delta AEB=\Delta ADC\left(c-g-c\right).\)
\(\Rightarrow BE=CD.\)
b) \(\Rightarrow\Delta AEB=\Delta ADC\left(cmt\right).\)
\(\Rightarrow\widehat{ABE}=\widehat{ACD}.\)
Ta có: \(\widehat{BDK}=180^o-\widehat{ADC};\widehat{CEK}=180^o-\widehat{AEB}.\)
Mà \(\widehat{AEB}=\widehat{ADC}\left(\Delta AEB=\Delta ADC\right).\)
\(\Rightarrow\widehat{BDK}=\widehat{CEK}.\)
Xét \(\Delta KBD\) và \(\Delta KCE:\)
\(\widehat{DBK}=\widehat{ECK}\left(\widehat{ABE}=\widehat{ACD}.\right).\)
BD = CE (cmt).
\(\widehat{BDK}=\widehat{CEK}\left(cmt\right).\)
\(\Rightarrow\Delta KBD=\Delta KCE\left(g-c-g\right).\)
c) Xét \(\Delta AKB\) và \(\Delta AKC:\)
\(AKchung.\)
AB = AC (\(\Delta ABC\) cân tại A).
KB = KC \(\left(\Delta KBD=\Delta KCE\right).\)
\(\Rightarrow\Delta AKB=\Delta AKC\left(c-c-c\right).\\ \Rightarrow\widehat{KAB}=\widehat{KAC}.\)
\(\Rightarrow\) AK là phân giác của \(\widehat{A}.\)
Xét \(\Delta ABC\) cân tại A:
AK là phân giác của \(\widehat{A}\left(cmt\right).\)
\(\Rightarrow\) AK là đường cao.
\(\Rightarrow AK\perp BC.\)
b: Xét tứ giác AFBC có
E là trung điểm của AB
E là trung điểm của CF
Do đó: AFBC là hình bình hành
Suy ra: AC//BF
a) Xét ΔABC có
E là trung điểm của AB(gt)
EF//BC(gt)
Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
b) Xét ΔABC có
E là trung điểm của AB(gt)
F là trung điểm của AC(cmt)
Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: \(EF=\dfrac{1}{2}BC\)(Định lí 2 về đường trung bình của tam giác)
a, Ta có:
ADC=ˆA−ˆDAB=90o−30o=60o
Mà ˆC=ˆA−ˆB=90o−30o=60o
Nên ˆADC=ˆC=60o
Do đó ΔADCΔADC là tam giác đều. (đpcm)
b, Theo chứng minh phần a, ta có: ΔADCΔADC là tam giác đều
⇒AD=DC=AC(1)
Mà do AD là trung tuyến của ΔABCΔABC trên AC nên
BD=CD=12BC
\(a,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow a=\dfrac{c^2}{b}\Leftrightarrow\dfrac{a}{b}=\dfrac{\dfrac{c^2}{b}}{b}=\dfrac{c^2}{b^2}\left(1\right)\\ \dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}\left(2\right)\\ \left(1\right)\left(2\right)\LeftrightarrowĐpcm\\ b,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\\ \text{Giả sử: }\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\Leftrightarrow ab^2-a^3=a^2b+bc^2-a^3-ac^2\\ \Leftrightarrow ab^2-a^2b=bc^2-ac^2\\ \Leftrightarrow ab\left(b-a\right)=c^2\left(b-a\right)\\ \Leftrightarrow ab=c^2\left(\text{luôn đúng}\right)\)
Vậy ta đc đpcm
đpcm là jzợ??