Giúp em với em đang cần gấp lắm,em xin cảm ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: A
Câu 2: B
Câu 3: D
Câu 4: A
Câu 5: C
Câu 6: B
Câu 7: A
Câu 9: B
(a) \(A=\dfrac{3}{x-2}\in Z\)
\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=4\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{-2;0;2;4\right\}.\)
(b) \(B=-\dfrac{11}{2x-3}\in Z\)
\(\Rightarrow\left(2x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=1\\2x-3=-1\\2x-3=11\\2x-3=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=7\\x=-4\end{matrix}\right.\)
Vậy: \(x\in\left\{-4;1;2;7\right\}.\)
(c) \(C=\dfrac{x+3}{x+1}=\dfrac{\left(x+1\right)+2}{x+1}=1+\dfrac{2}{x+1}\in Z\Rightarrow\dfrac{2}{x+1}\in Z\)
\(\Rightarrow\left(x+1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\\x=-3\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;-2;0;1\right\}.\)
(d) \(D=\dfrac{2x+10}{x+3}=\dfrac{2\left(x+3\right)+4}{x+3}=2+\dfrac{4}{x+3}\in Z\Rightarrow\dfrac{4}{x+3}\in Z\)
\(\Rightarrow\left(x+3\right)\inƯ\left(4\right)=\left\{\pm1;\pm2\pm4\right\}\)
\(\Rightarrow x\in\left\{-2;-4;-1;-5;1;-7\right\}\)
Gọi tam giác ABC vuông tại A, trung tuyến AM, đường cao AH
\(\Rightarrow AM=5\left(cm\right);AH=4\left(cm\right)\)
Ta có AM là trung tuyến ứng với cạnh huyền BC
\(\Rightarrow BC=2AM=10\left(cm\right)\)
Áp dụng HTL tam giác \(AH\cdot BC=AB\cdot AC\Rightarrow AB\cdot AC=40\Rightarrow AB=\dfrac{40}{AC}\\ \dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{16}=\dfrac{1}{\dfrac{1600}{AC^2}}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{AC^4+1600}{1600AC^2}=\dfrac{100AC^2}{1600AC^2}\Rightarrow AC^4-100AC^2+1600=0\\ \Rightarrow\left(AC^2-80\right)\left(AC^2-20\right)=0\\ \Rightarrow\left[{}\begin{matrix}AC^2=80\\AC^2=20\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}AC=4\sqrt{5}\left(AC>0\right)\\AC=2\sqrt{5}\left(AC>0\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}AB=2\sqrt{5}\\AB=4\sqrt{5}\end{matrix}\right.\)
Vậy với AB là cạnh góc vuông lớn thì \(\left(AB;AC;BC\right)=\left(4\sqrt{5};2\sqrt{5};10\right)\)
Do vai trò của 3 biến là như nhau, không mất tính tổng quát giả sử \(x>y>z\)
Ta có: \(x-z=\left(x-y\right)+\left(y-z\right)\)
Đặt \(\left\{{}\begin{matrix}x-y=a>0\\y-z=b>0\end{matrix}\right.\)
Do \(x;z\in\left[0;2\right]\Rightarrow x-z\le2\) hay \(a+b\le2\)
Ta có:
\(P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\)
\(P\ge\dfrac{9}{\left(a+b\right)^2}\ge\dfrac{9}{2^2}=\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=2\\\end{matrix}\right.\) \(\Rightarrow a=b=1\) hay \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị
\(a,x+\dfrac{1}{2}=\dfrac{3}{4}\\ x=\dfrac{3}{4}-\dfrac{1}{2}\\ x=\dfrac{1}{2}\\ b,-\dfrac{2}{3}-x=1\\x=-\dfrac{2}{3}-1\\ x=-\dfrac{5}{3}\\ d,\dfrac{1}{4}+\dfrac{3}{4}:x=\dfrac{5}{2}\\ \dfrac{3}{4}:x=\dfrac{5}{2}-\dfrac{1}{4}\\ \dfrac{3}{4}:x=\dfrac{9}{4}\\ x=\dfrac{3}{4}:\dfrac{9}{4}\\ x=\dfrac{1}{3}\\ e,\left(x+\dfrac{1}{4}\right)\cdot\dfrac{3}{4}=-\dfrac{5}{8}\\ x+\dfrac{1}{4}=-\dfrac{5}{8}:\dfrac{3}{4}\\ x+\dfrac{1}{4}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{1}{4}\\ x=\dfrac{7}{12}\)
\(g,\dfrac{x-3}{15}=\dfrac{-2}{5}\\ 5\left(x-3\right)=-30\\ x-3=-6\\ x=-6+3\\ x=-3\\ h,\dfrac{x}{-2}=\dfrac{-8}{x}\\ x^2=16\\ x=\pm\sqrt{16}\\ x=\pm4\\ k,\dfrac{x+2}{3}=\dfrac{x-4}{5}\\ 5\left(x+2\right)=3\left(x-4\right)\\ 5x+10=3x-12\\ 5x-3x=-12-10\\ 2x=-22\\ x=-11\)
\(m,\left(2x-1\right)^2=4\\ \Rightarrow\left[{}\begin{matrix}2x-1=2\\2x-1=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Bố cục của bài văn biểu cảm gồm 3 phần
gồm 3 phần