K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

undefined

23 tháng 9 2021

hỗn hợp Cu và gì đó em

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:

$(O), (O')$ tiếp xúc ngoài tại $A$ thì $O,A,O'$ thẳng hàng.

$OM\perp MN, O'N\perp MN$ (do $MN$ là ttc)

$\Rightarrow MNO'O$ là hình thang 

$\Rightarrow \widehat{NO'A}+\widehat{MOA}=180^0$ (2 góc trong cùng phía).

Lại có:

Theo tính chất tiếp tuyến, góc thì:

$\widehat{AMN}= \frac{1}{2}\widehat{MOA}$

$\widehat{ANM}=\frac{1}{2}\widehat{NO'A}$

$\Rightarrow \widehat{AMN}+\widehat{ANM}=\frac{1}{2}(\widehat{MOA}+\widehat{NO'A})$

$=\frac{1}{2}.180^0=90^0$

$\Rightarrow \widehat{MAN}=90^0$

b. Từ $A$ kẻ tiếp tuyến $AT$ chung của $(O), (O')$

Theo tính chất 2 tt cắt nhau thì:

$AT=MT=TN$

$\Rightarrow MN=MT+TN= 2AT$

Cũng theo tính chất 2 tiếp tuyến cắt nhau thì $TO, TO'$ lần lượt là phân giác $\widehat{MTA}, \widehat{NTA}$

Mà $\widehat{MTA}+\widehat{NTA}=180^0$ nên $TO\perp TO'$

Tam giác $TOO'$ vuông có đường cao $TA$, áp dụng HTL:

$TA^2=OA.O'A=9.4=36$

$\Rightarrow TA=6$

$MN=2TA=2.6=12$ (cm)

 

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Hình vẽ:

5 tháng 12 2021

Gọi \(\left\{H\right\}=BC\cap OA\)

\(\left\{{}\begin{matrix}AB=AC\\OB=OC=R\end{matrix}\right.\Rightarrow OA\text{ là trung trực }BC\\ \Rightarrow\Delta OBC\text{ cân tại B}\\ \Rightarrow OH\text{ là trung tuyến}\)

\(\Rightarrow BH=HC=\dfrac{R\sqrt{3}}{2}\\ \Rightarrow\cos OBH=\dfrac{BH}{OB}=\dfrac{\dfrac{R\sqrt{3}}{2}}{R}=\dfrac{\sqrt{3}}{2}\\ \Rightarrow\widehat{OBH}=30^0\\ \Rightarrow\widehat{ABC}=\widehat{ABO}-\widehat{OBH}=60^0\\ \Rightarrow\Delta ABC\text{ đều}\\ \Rightarrow\widehat{ABC}=\widehat{ACB}=60^0\)

a: góc CAB=1/2*sđ cung CB=90 độ

góc BAD=1/2*sđ cung BD=90 độ

góc CAD=góc CAB+góc BAD

=90 độ+90 độ=180 độ

=>C,A,D thẳng hàng

 

1 tháng 8 2021

undefined

23 tháng 9 2021

\(a,\Delta OAB.cân.tại.O\left(OA=OB=R\right)\) nên OH là trung tuyến cũng là đường cao \(\Rightarrow OH\perp AB\left(1\right)\)

\(\Delta OCD.cân.tại.O\left(OC=OD=R\right)\) nên Ok là trung tuyến cũng là đường cao \(\Rightarrow OK\perp CD\left(2\right)\)

Ta có \(AB//CD\left(gt\right)\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow OH.trùng.OK\Rightarrow O;H;K\) thẳng hàng

\(b,AH=\dfrac{1}{2}AB=8\left(cm\right);OA=R=10\left(cm\right)\\ \Rightarrow OH=\sqrt{OA^2-AH^2}=6\left(cm\right)\left(pytago\right)\\ \Rightarrow OK=HK-OH=14-6=8\left(cm\right)\\ Mà.OC=R=10\left(cm\right)\\ \Rightarrow CK=\sqrt{OC^2-OK^2}=6\left(cm\right)\\ Mà.CK=\dfrac{1}{2}CD\\ \Rightarrow CD=12\left(cm\right)\)

23 tháng 9 2021

sửa hình nha bạn: