K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

a, \(\left\{{}\begin{matrix}S\subset\left(SAC\right)\\O\subset\left(SAC\right)\end{matrix}\right.\Rightarrow SO\subset\left(SAC\right)\)

\(\left\{{}\begin{matrix}S\subset\left(SBD\right)\\O\subset\left(SBD\right)\end{matrix}\right.\Rightarrow SO\subset\left(SBD\right)\)

\(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

Gọi \(K=AD\cap BC\)

\(\Rightarrow\left\{{}\begin{matrix}S\subset\left(SAD\right)\\K\subset\left(SAD\right)\end{matrix}\right.\Rightarrow SK\subset\left(SAD\right)\)

\(\left\{{}\begin{matrix}S\subset\left(SBC\right)\\K\subset\left(SBC\right)\end{matrix}\right.\Rightarrow SK\subset\left(SBC\right)\)

\(\Rightarrow SK=\left(SAD\right)\cap\left(SBC\right)\)

12 tháng 12 2021

b, \(MN\) là đường trung bình.

\(\Rightarrow MN//AB\)

Lại có: \(CD//AB\)

\(\Rightarrow MN//CD\)

Mặt khác: \(MD=\dfrac{1}{2}AB=CD\Rightarrow MNCD\) là hình bình hành.

\(\Rightarrow MD//NC\)

a: \(E\in AC\subset\left(SAC\right)\)

\(E\in BD\subset\left(SBD\right)\)

Do đó: \(E\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SE\)

b: Gọi K là giao của AD với BC

\(K\in AD\subset\left(SAD\right)\)

\(K\in BC\subset\left(SBC\right)\)

Do đó: \(K\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(SK=\left(SAD\right)\cap\left(SBC\right)\)

c: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: \(\left(SAB\right)\cap\left(SCD\right)=xy\), xy đi qua S và xy//AB//CD

a: \(E\in AC\subset\left(SAC\right);E\in BD\subset\left(SBD\right)\)

=>\(E\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SE\)

b: Gọi K là giao của AD và BC

\(K\in AD\subset\left(SAD\right);K\in BC\subset\left(SBC\right)\)

=>\(K\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SK\)

c: Xét (SAB) và (SCD) có

AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy; xy đi qua S và xy//AB//CD

NV
4 tháng 1 2022

Áp dụng định lý Talet trong tam giác KAD:

\(\dfrac{KB}{KA}=\dfrac{KC}{KD}=\dfrac{BC}{AD}=\dfrac{1}{2}\)

\(\Rightarrow B,C\) lần lượt là trung điểm AK và DK

Mà E, F là trung điểm SA, SD

\(\Rightarrow\) M, N lần lượt là trọng tâm các tam giác SAK và SDK

\(\Rightarrow\dfrac{SM}{SB}=\dfrac{2}{3}\) ; \(\dfrac{SN}{SC}=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{MN}{BC}=\dfrac{SM}{SB}=\dfrac{SN}{SC}=\dfrac{2}{3}\) (Talet)

\(\Rightarrow MN=\dfrac{2}{3}BC=\dfrac{2}{3}.\dfrac{1}{2}AD=\dfrac{1}{3}AD\)

Lại có EF là đường trung bình tam giác SAD \(\Rightarrow EF=\dfrac{1}{2}AD\)

\(\Rightarrow\dfrac{S_{KMN}}{S_{KEF}}=\dfrac{MN}{EF}=\dfrac{\dfrac{1}{3}AD}{\dfrac{1}{2}AD}=\dfrac{2}{3}\)

NV
4 tháng 1 2022

undefined

a: \(I\in BD\subset\left(SBD\right)\)

\(I\in AC\subset\left(SAC\right)\)

Do đó: \(I\in\left(SBD\right)\cap\left(SAC\right)\)

mà \(S\in\left(SBD\right)\cap\left(SAC\right)\)

nên \(\left(SBD\right)\cap\left(SAC\right)=SI\)

b: Gọi K là giao của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

c: AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: \(\left(SAD\right)\cap\left(SBC\right)=xy\), xy đi qua S và xy//AD//BC

a: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

b: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

c: Chọn mp(SCD) có chứa CD

\(N\in SC\subset\left(SCD\right)\)

\(P\in SD\subset\left(SCD\right)\)

Do đó: \(NP\subset\left(SCD\right)\)

mà \(NP\subset\left(MNP\right)\)

nên (SCD) giao (MNP)=NP

Gọi E là giao điểm của CD với NP

=>E là giao điểm của CD với (MNP)

Chọn mp(SBD) có chứa MP

\(BD\subset\left(SBD\right)\)

\(BD\subset\left(ABCD\right)\)

Do đó: \(BD\subset\left(SBD\right)\cap\left(ABCD\right)\)

Gọi F là giao điểm của MP với BD

=>F là giao điểm của MP với (ABCD)

9 tháng 12 2021

9 tháng 12 2021

15 tháng 12 2021

15 tháng 12 2021

a: \(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

\(D\in FS\subset\left(SFE\right)\)

\(B\in SE\subset\left(SFE\right)\)

Do đó: \(BD\subset\left(SFE\right)\)

Ta có: \(O\in BD\subset\left(SEF\right)\)

\(O\in AC\subset\left(ACD\right)\)

Do đó: \(O\in\left(SEF\right)\cap\left(ACD\right)\)

mà \(D\in\left(SEF\right)\cap\left(ACD\right)\)

nên \(\left(SEF\right)\cap\left(ACD\right)=DO\)

b: Xét ΔSDB có

E,F lần lượt là trung điểm của SB,SD

=>EF là đường trung bình của ΔSDB

=>EF//DB

Xét (ABCD) và (AEF) có

BD//EF

\(A\in\left(ABCD\right)\cap\left(AEF\right)\)

Do đó: (ABCD) giao (AEF)=xy, xy đi qua A và xy//BD//EF

 

8 tháng 12 2023

Cứu em câu c với ạ em không nhìn ra được giao điểm