K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

|x + 1| > 5

TH1: x + 1 > 5

<=> x > 6

TH2: x + 1 < -5

<=> x < -6

12 tháng 12 2021

81/(-3)^n = -243

(-3)^n = -1/3

(-3)^n = (-3)^(-1)

n = -1

11 tháng 5 2022

Bạn ơi mik ra \(\dfrac{x^3+45x-54}{12\left(x-3\right)\left(x+3\right)}\) có đúng không bạn?

11 tháng 5 2022

Mình rút chx hết bạn bạn gửi cách làm bạn qua mình tham khảo đc k ạ?

a)x ∈ ∅

b) x=3

13 tháng 9 2021

\(a,\Rightarrow2^3< 2^x\le2^4\Rightarrow x=4\\ b,\Rightarrow3^3< 3^{12}:3^x< 3^5\\ \Rightarrow3^3< 3^{12-x}< 3^5\\ \Rightarrow12-x=4\Rightarrow x=8\)

Ta có: \(\dfrac{\left(x+3\right)\left(x-3\right)}{3}+2=x\left(1-x\right)\)

\(\Leftrightarrow\dfrac{x^2-9}{3}+\dfrac{6}{3}=\dfrac{3x\left(1-x\right)}{3}\)

\(\Leftrightarrow x^2-9+6=3x-3x^2\)

\(\Leftrightarrow x^2-3-3x+3x^2=0\)

\(\Leftrightarrow4x^2-3x-3=0\)

\(\Delta=9-4\cdot4\cdot\left(-3\right)=9+48=57\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là 

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{57}}{8}\\x_2=\dfrac{3+\sqrt{57}}{8}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3-\sqrt{57}}{8};\dfrac{3+\sqrt{57}}{8}\right\}\)

9 tháng 2 2021

a/ \(\lim\limits\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^n}=\lim\limits\dfrac{\dfrac{\left(\dfrac{1}{3}\right)^{n+1}-1}{\dfrac{1}{3}-1}}{\dfrac{\left(\dfrac{1}{2}\right)^{n+1}-1}{\dfrac{1}{2}-1}}=\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}}=3\)

b/ \(\lim\limits\left(n^3+n\sqrt{n}-5\right)=+\infty-5=+\infty\)

`@` `\text {Ans}`

`\downarrow`

`a)`

`2^2 * 16 \ge 2^x \ge 4^2`

`=> 2^2 * 2^4 \ge 2^x \ge 2^4`

`=> 2^6 \ge 2^x \ge 2^4`

`=> x \in {4; 5; 6}`

`b)`

`9*27 \le 3^x \le 243`

`=> 3^2 * 3^3 \le 3^x \le 3^5`

`=> 3^5 \le 3^x \le 3^5`

`=> x = 5`

`c)`

`2 * (x - 1/2)^2 - 1/8 = 0`

`=> 2* (x - 1/2)^2 = 1/8`

`=> (x - 1/2)^2 = 1/8 \div 2`

`=> (x-1/2)^2 = 1/16`

`=> (x - 1/2)^2 = (+- 1/4)^2`

`=>`\(\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{1}{4}\\x-\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=\dfrac{1}{4}+\dfrac{1}{2}\\x=\dfrac{1}{2}-\dfrac{1}{4}\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy, `x \in {1/4; 3/4}.`

20 tháng 7 2023

mình cảm ơn ạ

a: \(2^{x^2-1}=256\)

=>\(2^{x^2-1}=2^8\)

=>\(x^2-1=8\)

=>\(x^2=9\)

=>\(x\in\left\{3;-3\right\}\)

b: \(3^{x^2+3x}=81\)

=>\(3^{x^2+3x}=3^4\)

=>\(x^2+3x=4\)

=>\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

c: \(2^{x^2-5x}=64\)

=>\(2^{x^2-5x}=2^6\)

=>\(x^2-5x=6\)

=>\(x^2-5x-6=0\)

=>(x-6)(x+1)=0

=>\(\left[{}\begin{matrix}x-6=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\)

d: \(\left(\dfrac{1}{3}\right)^x=243\)

=>\(\left(\dfrac{1}{3}\right)^x=3^5=\left(\dfrac{1}{3}\right)^{-5}\)

=>x=-5

e: \(\left(\dfrac{1}{3}\right)^{x+5}=3^{2x+1}\)

=>\(3^{-x-5}=3^{2x+1}\)

=>-x-5=2x+1

=>-3x=6

=>x=-2

a: =>x=(-2/3)^5:(-2/3)^2=(-2/3)^3=-8/27

b: =>x*(-1/3)^3=(-1/3)^4

=>x=-1/3

d: =>3x-2=-3

=>3x=-1

=>x=-1/3

a: ĐKXĐ: x<>0; x<>-1

PT =>x+1-2x=3

=>1-x=3

=>x=-2(nhận)

b: Sửa đề: \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)

=>x-3=5(2x-3)

=>10x-15=x-3

=>9x=12

=>x=4/3(nhận)

c: ĐKXĐ: x<>0; x<>2

PT =>x(x+2)-x+2=2

=>x^2+2x-x=0

=>x(x+1)=0

=>x=-1

5 tháng 8 2021

a)\(\left|x+\dfrac{2}{3}\right|=\dfrac{5}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{3}=\dfrac{-5}{6}\\x+\dfrac{2}{3}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)

b) \(\left(x-\dfrac{1}{3}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{2}{3}\\x-\dfrac{1}{3}=\dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{3}\end{matrix}\right.\)

a) Ta có: \(\left|x+\dfrac{2}{3}\right|=\dfrac{5}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{3}=-\dfrac{5}{6}\\x+\dfrac{2}{3}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)

b) Ta có: \(\left(x-\dfrac{1}{3}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{2}{3}\\x-\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{3}\end{matrix}\right.\)