cho tam giác ABC vuông tại A .K là trung điểm của BC , trên tia đối của tia K lấy điểm D , sao cho KD=KA
a) CMR : CD//AB
B) gọi H là trung điểm của AC , BH cắt AD tại M , DH cắt BC tại N . CMR : TAM GIÁC ABH=TAM GIÁC CDH
c) CM : tam giác HMN cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tứ giác ABDC ta có : BK=KC=KD=KA
=> ABDC là hình chữ nhật
=> CD // AB
tự vẽ hình nha
a) xét 2 tam giác BKA và CKD có:
BK=CK (K là TĐ của BC)
2 góc BKA=CKD (đối đỉnh)
KA=KD(gt)
=> 2 tam giác BKA=CKD(c.g.c) => góc ABK=góc DCK(2 góc tương ứng)
mà 2 góc này ở vị trí so le trong => AB//CD
b) 2 tam giác ABK=DCK(theo a) => BA=CD(2 cạnh tương ứng)
ta có AB//CD mà BA vuông góc với AC => DC vuông góc với AC
xét 2 tam giác ABH và CDH có:
góc BAH=góc DCH(=90độ)
BA=CD(chứng minh trên)
AH=CH(H là TĐ của AC)
=> 2 tam giác ABH=CDH(c.g.c)
2 tam giác ABH=CDH(theo b) => 2 góc AHB=CHD(2 góc tương ứng)
xét 2 tam giác BAC và DCA có:
góc BAC=góc DCA(=90độ)
BA=DC(2 tam giác BKA=CKD)
cạnh AC chung
=> 2 tam giác BAC=DCA(c.g.c) => 2 góc BCA=DAC(2 góc tương ứng)
xét 2 tam giác AMH và CNH có:
góc MAH =góc NCH (chứng minh trên )
HA=HC (H là TĐ của AC)
góc AHB = góc CHD( chứng minh trên)
=> 2 tam giác AMH =CNH(g.c.g) => MH=NH(2 cạnh tương ứng) => tam giác MHN cân ở H
c) Xem lại đề
a) xét \(\Delta\) DKC và \(\Delta\) BKA có :
BK=KC
AK=KD
BKA=DKC(đối đỉnh)
=> \(\Delta\) DKC = \(\Delta\) BKA (c-g-c)
=> góc dck = góc bka ( 2 góc tương ứng )
mà góc dck và góc bka ở vị trí so le trong nên ba//dc
mà ba vuông góc với ac => dc vuông góc với ac (đlý)
b) ta có: \(\Delta\) dkc = \(\Delta\) bka (cmt câu a)
=> dc = ba ( 2 cạnh tương ứng)
xét tam giác abh vuông tại a và tam giác cdh vuông tại d có
ah=hc(gt)
ab=dc(cmt)
=>tam giác ahb = tam giác chd (c-g-c)