CMR: \(11^{n+2}+12^{2n+1}\)chia hết cho 133
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11n+2+122n+1
=121.11n+144n.12
(133-12).11n+144n.12
11n.133-11n.12+144n.12
11n.133+144n.12-11n.12
=11.133+12(144n-11n)
Ta cso 144n-11n : 144-11=133
11.133: 133
Vậy.........
a, 7 . 52n + 12 . 6n
= 7 . (52)n - 7 . 6n + 19 . 6n
= 7 . (25n - 6n) + 19 . 6n
= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19
=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19
=> 7 . 52n + 12 . 6n ⋮ 19
b, 11n + 2 + 122n + 1
= 121 . 11n + 144n . 12
= 133 . 11n - 12 . 11n + 144n . 12
= 133 . 11n + 12(144n - 11n)
= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)
= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)
Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133
=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133
=> 11n + 2 + 122n + 1 ⋮ 133
Bài làm :
a) 7 . 52n + 12 . 6n
= 7 . (52)n - 7 . 6n + 19 . 6n
= 7 . (25n - 6n) + 19 . 6n
= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19
=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19
=> Điều phải chứng minh
b) 11n + 2 + 122n + 1
= 121 . 11n + 144n . 12
= 133 . 11n - 12 . 11n + 144n . 12
= 133 . 11n + 12(144n - 11n)
= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)
= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)
Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133
=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133
=> Điều phải chứng minh
b) Với n=1 thì hiển nhiên đúng.
Giả sử mệnh đề đúng với n=k tức:
11k+1+122k-1 chia hết cho 133
Với n=k+1 thì:
11k+2+122k+1=11k+1.11+122k-1.122=11(11k+1+122k-1)+133.122k-1 luôn luôn chia hết cho 133.
Vậy mệnh đề đúng với n=k+1 => dpcm.
tick nha
bạn bấm vào dòng chữ xanh này nhé chứng minh : 11n+2+122n+1 chia hết cho 133
11^n+2+12^2n+1=11^n.11^2+12^2n.12=11^n.121+(12^2)^n.12=11^n.121+144^n.12=11^n.(133-12).144^n.12=(11^n.133-11^n.12)+144^n.12
=11^n.133+(144^n-11^n).12
Vi 11^n.133 chia het cho 133; 144^n-11^n chia het cho 133
suy ra (144^n-11^n).12 chia het cho 133
Chung to 11^n+2+12^2n+1 chia het cho 133.
Cristiano Ronaldo : đưa nick của Trần Thùy Dung và Monkey D.Luffy đây
Đặt A(n) = 11^(n+2) + 12^(2n+1)
khỏi suy nghĩ nhiều, ta dùng qui nạp nhé:
* n = 0: A(0) = 11² + 12 = 133 chia hết cho 133
* giả sử A(k) chia hết cho 133,
ta có: A(k) = 11^(k+2) + 12^(2k+1) chia hết cho 133
ta cm A(k+1) chia hết cho 133
A(k+1) = 11^(k+1+2) + 12^(2k+2+1) =
= 11^(k+2).11 + 12^(2k+1).12²
= 11.[11^(k+2)+12^(2k+1)] + (12²-11).12^(2k+1)
= 11.A(k) + 133.12^(2k+1)
Do giả thiết qui nạp A(k) chia hết cho 133 và 133.12^(2k+1) chi hết cho 133
nên ta có A(k+1) chia hết cho 133
tóm lại A(n) chia hết cho 133 với mọi n thuộc N
Vậy ...