Một viên đạn đang bay thẳng đứng lên cao với vận tốc 250 m/s thì nổ thành hai mảnh
có khối lượng bằng nhau. Biết rằng mảnh thứ nhất bay lệch một góc 60o so với phương thẳng đứng với vận tốc 250 m/s. Tìm độ lớn vận tốc và hướng của mảnh thứ hai.
Ban tu ve hinh nhe? :D
Hệ kín động lượng được bảo toàn. \(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)
Ta có: \(\left\{{}\begin{matrix}p=mv=250m\left(kg.m/s\right)\\p_1=\dfrac{m}{2}.v_1=125m\left(kg.m/s\right)\end{matrix}\right.\)
Áp dụng định lý hàm cos ta có:
\(\cos\alpha=\dfrac{p^2+p_1^2-p_2^2}{2p_1p}=\dfrac{250^2m^2+125^2m^2-\dfrac{m^2}{4}v_2^2}{2.250m.125m}\)
\(\Leftrightarrow250.125=250^2+125^2-\dfrac{1}{4}v_2^2\) \(\Rightarrow v_2=\sqrt{187500}\left(m/s\right)\simeq433\left(m/s\right)\)
Gọi \(\beta\) là góc hợp bởi mảnh 2 và phương thẳng đứng:
\(\cos\beta=\dfrac{p^2+p_2^2-p_1^2}{2p_2p}=\dfrac{250^2+216,5^2-125^2}{2.250.216,5}=0,86\)
\(\Rightarrow\beta\simeq31^0\)