K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021
. Dạng 1: Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên

+ Thông thường biểu thức A sẽ có dạng A = \frac{{f\left( x \right)}}{{g\left( x \right)}} trong đó f(x) và g(x) là các đa thức và g(x) ≠ 0

+ Cách làm:

- Bước 1: Tách về dạng A = m\left( x \right) + \frac{k}{{g\left( x \right)}} trong đó m(x) là một biểu thức nguyên khi x nguyên và k có giá trị là số nguyên

- Bước 2: Để A nhận giá trị nguyên thì \frac{k}{{g\left( x \right)}}nguyên hay k \vdots g\left( x \right) nghĩa là g(x) thuộc tập ước của k

- Bước 3: Lập bảng để tính các giá trị của x

- Bước 4: Kết hợp với điều kiện đề bài, loại bỏ những giá trị không phù hợp, sau đó kết luận bài toán

2. Dạng 2: Tìm giá trị của x để biểu thức A nhận giá trị nguyên

+ Đây là một dạng nâng cao hơn của dạng bài tập tìm gá trị nguyên của x để biểu thức A nhận giá trị nguyên bởi ta chưa xác định giá trị của biến x có nguyên hay không để biến đổi biểu thức A về dạng A = m\left( x \right) + \frac{k}{{g\left( x \right)}}. Bởi vậy, để làm được dạng bài tập này, chúng ta sẽ thực hiện các bước sau:

12 tháng 12 2021

\(Q=\dfrac{x+3-x+7}{2x+1}=\dfrac{10}{2x+1}\in Z\\ \Leftrightarrow2x+1\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\\ \Leftrightarrow x\in\left\{-3;-1;0;2\right\}\left(x\in Z\right)\)

a: ĐKXĐ: x<>-1

b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)

\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)

c: P=2

=>x^2-2x=2x+2

=>x^2-4x-2=0

=>\(x=2\pm\sqrt{6}\)

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

8 tháng 12 2021

a)B =  \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\left(ĐK:x\ne\pm3\right)\)

\(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{7x+3}{x^2-9}\)

\(\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-7x-3}{\left(x+3\right)\left(x-3\right)}\)

\(\dfrac{3x^2-9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x+3}\)

b) \(\left|2x+1\right|=7< =>\left[{}\begin{matrix}2x+1=7< =>x=3\left(L\right)\\2x+1=-7< =>x=-4\left(C\right)\end{matrix}\right.\)

Thay x = -4 vào B, ta có:

B = \(\dfrac{-4.3}{-4+3}=12\)

c) Để B = \(\dfrac{-3}{5}\)

<=> \(\dfrac{3x}{x+3}=\dfrac{-3}{5}< =>\dfrac{3x}{x+3}+\dfrac{3}{5}=0\)

<=> \(\dfrac{15x+3x+9}{5\left(x+3\right)}=0< =>x=\dfrac{-1}{2}\left(TM\right)\)

d) Để B nguyên <=> \(\dfrac{3x}{x+3}\) nguyên

<=> \(3-\dfrac{9}{x+3}\) nguyên <=> \(9⋮x+3\)

x+3-9-3-1139
x-12(C)-6(C)-4(C)-2(C)0(C)6(C)

 

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2}{x^2-4}\)

12 tháng 12 2021

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)

8 tháng 12 2021

a) \(A=\dfrac{x+2+x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-x+1}{\left(x-2\right)\left(x+2\right)}\)

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2}{x^2-4}\)

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Lời giải:

Để $A$ nguyên thì \(x-3\vdots 2x+3\)

\(\Leftrightarrow 2(x-3)\vdots 2x+3\)

\(\Leftrightarrow 2x-6\vdots 2x+3\Leftrightarrow 2x+3-9\vdots 2x+3\)

\(\Leftrightarrow 9\vdots 2x+3\Rightarrow 2x+3\in\left\{\pm 1;\pm 3;\pm 9\right\}\)

\(\Rightarrow x\in \left\{-2; -1; 0; -3; -6; 3\right\}\)