K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2021

\(MN+MP=34\)

\(MN-MP=14\)

\(\Rightarrow2MP=34-14=20\)

\(\Rightarrow MP=10\left(cm\right),MN=34-10=24\left(cm\right)\)

\(Pytago:\)

\(NP=\sqrt{10^2+24^2}=26\left(cm\right)\)

 

Ta có: \(\left\{{}\begin{matrix}MN+MP=34\\MN-MP=14\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2MN=48\\MP+MN=34\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MN=24\\MP=10\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(NP^2=MN^2+MP^2\)

\(\Leftrightarrow NP^2=10^2+24^2=676\)

hay NP=26(cm)

Vậy: MN=10cm; MP=24cm; NP=26cm

30 tháng 3 2019

MN+MP+NP=180

MN+MP+80=180cm

MP-MN=20cm

MN+MP=100cm

a.ĐỘ DÀI CẠNH MP LÀ: ((MN+MP)+(MP-MN))÷2=(100+20)÷2=60cm( tổng và hiệu)

Độ dài cạnh MN là: MP-20= 60-20=40cm

b. Diện tích tam giác vuông MNP là: 1/2× MN x MP=1/2 × 40 × 60= 1200cm2

31 tháng 3 2019

Tổng độ dài của cạnh MN và MP là:

180 - 80 = 100(cm)

Độ dài cạnh MN là:

(100 - 20): 20 = 40(cm)

Độ dài cạnh MP là:

100 - 40 = 60(cm)

Diện tích tam giác MNP là:

40x60:2 = 1200(cm2)

             Đ/S:..............

18 tháng 4 2021

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

18 tháng 4 2021

Cách tính MK mình chưa nghĩ ra mong bạn thông cảm 

2 tháng 5 2022

Áp dụng định lí Pytago trong △MNP vuông tại P có

NP2 + MP2 = MN2

hay NP2 + 52 = 132

NP2 = 132-52

NP2 = 169-25

NP2 = \(\sqrt{144}\)

NP = 12cm

2 tháng 5 2022

MNP vuông tại P

=> MN là cạnh huyền 

mà MN lại nhỏ hơn cạnh góc vuông ( MN< MP ) ( vô lí)

đề sai

\(MN=\sqrt{9^2+12^2}=15\left(cm\right)\)

9 tháng 3 2022

MN=15cm

4 tháng 3 2023

AB= 5cm

BC= 2cm

AC=4cm

MN=5cm

NP=2cm

MP=4cm

26 tháng 10 2023

a: Xét ΔMAP vuông tại P có \(tanP=\dfrac{MA}{AP}=\dfrac{7}{4,5}=\dfrac{14}{9}\)

=>\(\widehat{P}\simeq57^0\)

b: Xét ΔMNP vuông tại M có MA là đường cao

nên \(MA^2=AN\cdot AP\)

=>\(AN\cdot4,5=7^2=49\)

=>\(AN=\dfrac{98}{9}\left(cm\right)\)

NP=NA+AP

\(=\dfrac{98}{9}+\dfrac{9}{2}=\dfrac{277}{18}\left(cm\right)\)

Xét ΔMNP vuông tại M có MA là đường cao

nên \(\left\{{}\begin{matrix}MN^2=NA\cdot NP\\MP^2=PA\cdot PN\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}MN=\sqrt{\dfrac{98}{9}\cdot\dfrac{277}{18}}=\dfrac{7\sqrt{277}}{9}\left(cm\right)\\MP=\sqrt{4,5\cdot\dfrac{277}{18}}=\dfrac{\sqrt{277}}{2}\left(cm\right)\end{matrix}\right.\)