cho tam giác MNP vuông tại biết MN+MP=34cm và MN-MP=14cm . tính độ dài các cạnh của tam giác MNP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MN+MP+NP=180
MN+MP+80=180cm
MP-MN=20cm
MN+MP=100cm
a.ĐỘ DÀI CẠNH MP LÀ: ((MN+MP)+(MP-MN))÷2=(100+20)÷2=60cm( tổng và hiệu)
Độ dài cạnh MN là: MP-20= 60-20=40cm
b. Diện tích tam giác vuông MNP là: 1/2× MN x MP=1/2 × 40 × 60= 1200cm2
Tổng độ dài của cạnh MN và MP là:
180 - 80 = 100(cm)
Độ dài cạnh MN là:
(100 - 20): 20 = 40(cm)
Độ dài cạnh MP là:
100 - 40 = 60(cm)
Diện tích tam giác MNP là:
40x60:2 = 1200(cm2)
Đ/S:..............
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
Áp dụng định lí Pytago trong △MNP vuông tại P có
NP2 + MP2 = MN2
hay NP2 + 52 = 132
NP2 = 132-52
NP2 = 169-25
NP2 = \(\sqrt{144}\)
NP = 12cm
a: Xét ΔMAP vuông tại P có \(tanP=\dfrac{MA}{AP}=\dfrac{7}{4,5}=\dfrac{14}{9}\)
=>\(\widehat{P}\simeq57^0\)
b: Xét ΔMNP vuông tại M có MA là đường cao
nên \(MA^2=AN\cdot AP\)
=>\(AN\cdot4,5=7^2=49\)
=>\(AN=\dfrac{98}{9}\left(cm\right)\)
NP=NA+AP
\(=\dfrac{98}{9}+\dfrac{9}{2}=\dfrac{277}{18}\left(cm\right)\)
Xét ΔMNP vuông tại M có MA là đường cao
nên \(\left\{{}\begin{matrix}MN^2=NA\cdot NP\\MP^2=PA\cdot PN\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}MN=\sqrt{\dfrac{98}{9}\cdot\dfrac{277}{18}}=\dfrac{7\sqrt{277}}{9}\left(cm\right)\\MP=\sqrt{4,5\cdot\dfrac{277}{18}}=\dfrac{\sqrt{277}}{2}\left(cm\right)\end{matrix}\right.\)
\(MN+MP=34\)
\(MN-MP=14\)
\(\Rightarrow2MP=34-14=20\)
\(\Rightarrow MP=10\left(cm\right),MN=34-10=24\left(cm\right)\)
\(Pytago:\)
\(NP=\sqrt{10^2+24^2}=26\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}MN+MP=34\\MN-MP=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2MN=48\\MP+MN=34\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MN=24\\MP=10\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(NP^2=MN^2+MP^2\)
\(\Leftrightarrow NP^2=10^2+24^2=676\)
hay NP=26(cm)
Vậy: MN=10cm; MP=24cm; NP=26cm