Số đo các góc trong 1 đa giác n cạnh lập thành 1 dãy số cộng. Biết góc nhỏ nhất là 110 độ góc lớn nhất là 160 độ. Tính số cạnh các đa giác đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta sắp xếp các cạnh giá trị u 1 ; … u n tăng dần theo cấp số cộng là 3. Khi đó ta có:
S n = 158 u n = 44 ⇔ u 1 + 44 . n 2 = 158 u 1 + 3 n − 1 = 44 ⇔ u 1 = 47 − 3 n 47 − 3 n + 44 . n = 316 *
* ⇔ 3 n 2 − 91 n + 316 = 0 ⇔ n = 4 T M n = 79 3 L
- Gọi độ dài các cạnh của đa giác trên là:\(a_1,a_2,...,a_n\left(cm\right)\left(a_1< a_2< ...< a_n\right)\left(n\in N\cdot,n>2\right)\)
- Vì độ dài các cạnh của đa giác trên lập thành 1 cấp số cộng nên ta có:
\(\left\{{}\begin{matrix}a_n=a_1+\left(n-1\right)d\\a_1+a_2+...+a_n=na_1+\dfrac{n\left(n-1\right)}{2}d\end{matrix}\right.\)
Mặt khác, theo đề bài ta có: \(\left\{{}\begin{matrix}a_n=15\left(cm\right)\\d=3\\a_1+a_2+...+a_n=45\left(cm\right)\end{matrix}\right.\)
Do đó: \(\left\{{}\begin{matrix}a_1+3\left(n-1\right)=15\left(1\right)\\na_1+\dfrac{3n\left(n-1\right)}{2}=45\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow na_1+3n\left(n-1\right)=15n\left(3\right)\)
Lấy \(\left(3\right)-\left(2\right)\), ta được: \(\dfrac{3n\left(n-1\right)}{2}=15n-45\)
\(\Leftrightarrow3n^2-3n+90-30n=0\)
\(\Leftrightarrow n^2-11n+30=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=6\\n=5\end{matrix}\right.\)
*Với \(n=6\). Từ (1) ta có: \(a_1=15-3\left(n-1\right)=15-3\left(6-1\right)=0\) (loại)
*Với \(n=5\). Từ (1) ta có: \(a_1=15-3\left(n-1\right)=15-3\left(5-1\right)=3\left(cm\right)\)
Vậy số cạnh của đa giác đó là 5.