K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

734gtttt84j694dt97y6njdhyt

9 tháng 10 2024

      Đây là toán nâng cao chuyên đề dãy số có quy luật, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp xét dãy số phụ như sau:

                        Giải:

a; Cho dãy số: 1 x 3 ; 3 x 5; 5 x 7 ; 7 x 9; ...

Tìm số thứ 50 của dãy số trên

Xét dãy số: 1; 3; 5; 7;...;

Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2

Số thứ 50 của dãy số trên là:  2 x (50 - 1) + 1 = 99

Vậy thừa số thứ nhất của số hạng thứ 50 của tổng A là: 99

Thừa số thứ hai của số hạng thứ 50 của tổng A là: 99 +  2 = 101

Từ những lập luận trên ta có:

Số hạng thứ 50 của dãy số 1 x 3 ; 3 x 5; 5 x 7 ;... là: 99 x 101

 

 

 

 

9 tháng 10 2024

b; tính tổng của B =  1 x 3 + 3 x 5 +  5 x 7 + ...+ 99 x 101

  B = 1 x 3 + 3 x 5 + 5 x 7 + 7 x 9 + ...+ 99 x 101

6B = 1 x 3 x 6 + 3 x 5 x 6 + 5 x 7 x 6 + ...+ 99 x 101 x 6

6B  = 1 x 3 x (5 + 1) + 3x5x(7 - 1) +5x7x(9-3)+...+99x101x(103-97)

6B = 1.3.5+1.3.1+3.5.7-1.3.5 + 5.7.9-3.5.7+...+99.101103 - 97.99.101

6B = 1.3.1 + 99.101.103

6B = 3 +9999.103

6B = 3 +1029897

6B = 1029900

B = 1029900 : 6

B = 171650

22 tháng 2 2016

số hạng thứ 50 là 50.55

22 tháng 2 2016

phần nguyên của số thứ 50 là:50*1=50

phần thập phân của số thứ 50 là:50+5=55

vậy số hạng thứ 50 là:50,55

8 tháng 8 2016

a)50.55

b)148.151

8 tháng 8 2016

a, 1.6,2.7,3.8,...,50.55

Vậy số hạng thứ 50 của dãy là: 50.55=2750

b, Mik chịu thua

3 tháng 6 2021

Gọi x là số cần tìm 

Theo đề , ta có 

( x - 1 ) : 2 + 1 = 50 

( x - 1 ) : 2 = 50 - 1 

( x - 1 ) : 2 = 49 

x - 1 = 49 x 2 

x - 1 = 98 

x = 98 + 1 

x = 99 

Gọi y là số cần tìm 

Theo đề , ta có 

( y - 24 ) : 3 + 1 = 50 

( y - 24 ) : 3 = 50 - 1 

( y - 24 ) : 3 = 49 

( y - 24 ) = 49 x 3 

y - 24 = 147 

y = 147 + 24 

y = 171 

10 tháng 6 2016

Mình vừa giúp bạn bài này hôm qua mà !!!

a)1.6, 2.7, 3.8,...

Theo quy luật thì thừa số thứ nhất của số hạng thứ 50 là : 50

=> thừa số thứ nhất của số hạng thứ 50 là 55

=> Số hạng thứ 50 là :

50 . 55 = 2750

b)1.4, 4.7, 7.10, ...

Theo quy luật thì thừa số thứ nhất của số hạng thứ 50 là :

(50 − 1) . 148

=> thừa số thứ nhất của số hạng thứ 50 là 151

=> Số hạng thứ 50 là :

148 . 151 22348

10 tháng 6 2016

a) Mỗi số hạng cách nhau 1,1 đơn vị. Gọi số thứ 50 là a

Ta có : (a - 1,6) : 1,1 + 1 = 50

=> (a - 1.6) : 1,1 = 49  => a - 1,6 = 53,9 => a =  55,5

b) Mỗi số hạng cách nhau 3,3 đơn vị. Gọi số hạng thứ 50 là b

Ta có : (b - 1,4) : 3,3 + 1 = 50

=> (b - 1,4) : 3,3 = 49 => b - 1,4 = 161,7 => b = 163,1

6 tháng 12 2017

khoảng cach là

8-4=2

số số hang la

(2000-4):4+1=249

số hang thu 50 là

4*50+4=204

tổng là

(2000+4)*297:2=297594

12 tháng 6 2018

Ta có:

Khoảng cách giữa các số hạng liền nhau là:

8-4=4

a,Dãy trên có :(2000-4):4+1=500(số hạng)

b,Số hạng thứ 50 của dãy là:4+(2000-1)×4=8 000

c,Tổng của dãy là:(2000+4)×2000÷2=2 004 000

Đáp số:a,500 số hạng

             b,8 000

             c,2 004 000.

Mk lm đúng 100% luôn đó.k mk nhé!!!

26 tháng 8 2017

1)55=4+5+6+7+8+9+10+11

26 tháng 8 2017

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN.