K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

- Nếu P = 2 => P2 + 14 = 22 + 14 = 18 (ko thỏa mãn vì 18 là hợp số)

- Nếu P = 3 => P2 + 14 = 32 + 14 = 23 (thỏa mãn vì 23 là số nguyên tố)

- Nếu P > 3 => P có 2 dạng :

 + P = 3k + 1 => P2 + 14 = (3k + 1)2 + 14 = (9k2 + 6k + 1) + 14 = 9k2 + 6k + 15 = 3 (3k2 + 2k + 5)

         => P là hợp số (ko thỏa mãn)

 + P = 3k + 2 => P2 + 14 = (3k + 2)2 + 14 =[9k2 + 2 (3k . 2) + 4 ] + 14 = 9k2 + 12k + 18 = 3 (3k2 + 4k + 6)

         => P là hợp số (ko thỏa mãn)

Vậy P = 3 thì P2 + 14 là số nguyên tố

18 tháng 7 2015

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

18 tháng 7 2015

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

14 tháng 8 2016

a)-     nếu p= 2 => p là HS (loại)

   -    nếu p= 3=> p+2= 3+ 2= 5 ( SNT) => t/m

                      p+4= 3+4= 7  (SNT) => t/m

  -    Nếu p nguyên tố> 3 => P:3 dư1 => P= 3k+1

                                        P:3 dư 2 => P= 3k +2

       +   P= 3k +1 =>p+2 = (3k+1)+2 =3k+3 chia hết cho 3  ( t/m)

       + P= 3k +2 =>p+4 = (3k+2)+ 4 =3k + 6 chia hết cho 3   (t/m )

                    Vậy P=3

25 tháng 9 2016

Tìm số nguyên tố p sao cho

A. p, p+2, p+4 là các số nguyên tố

B. p+10,p+14 là các số nguyên tố

C. p+2,p+6,p+8,p+14 là các số nguyên tố

a)-     nếu p= 2 => p là HS (loại)

   -    nếu p= 3=> p+2= 3+ 2= 5 ( SNT) => t/m

                      p+4= 3+4= 7  (SNT) => t/m

  -    Nếu p nguyên tố> 3 => P:3 dư1 => P= 3k+1

                                        P:3 dư 2 => P= 3k +2

       +   P= 3k +1 =>p+2 = (3k+1)+2 =3k+3 chia hết cho 3  ( t/m)

       + P= 3k +2 =>p+4 = (3k+2)+ 4 =3k + 6 chia hết cho 3   (t/m )

                    Vậy P=3

9 tháng 1 2015

Bài 1 :+ Nếu p = 2 => p + 2 = 4 P (loại)
+ Nếu p = 3 => p + 2 = 5 P , p + 4 = 7 P
+ Nếu p > 3 => vì p nguyên tố nên p 3 => p = 3k + 1; p = 3k + 2(k N)
Trường hợp: p = 3k + 1 => p + 2 = 3k + 3 = 3(k + 1) 3
mà p > 3 nên p là hợp số
Trường hợp: p = 3k + 2 => p + 4 = 3k + 6 = 3(k + 2) 3
mà p > 3 nên p là hợp số
=>không có giá trị nguyên tố p lơn hơn 3 nào thoả mãn.
Vậy p = 3 là giá trị duy nhất cần tìm

9 tháng 1 2015

1) p=3

p=3

p=3

p=5

Giải:

a, p=3

b,p=3