K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vghgyuhvfgcvvvvvv

27 tháng 2 2016

\(xy+xz+yz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
bây giờ ta đi chứng minh bđt phụ:
với \(a_1;a_2;...;a_8>0\)  ta có: \(a_1+a_2+...+a_8\ge8\sqrt[8]{a_1a_2...a_8}\)(Cô si) 
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\ge8\sqrt[8]{\frac{1}{a_1a_2...a_8}}\)
Nhân vế với vế ta đc:
\(\left(a_1+a_2+...+a_8\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\right)\ge64\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\ge\frac{64}{a_1+a_2+...+a_8}\)
Dấu "=" xảy ra <=> a1=a2=..=a8
a/d bđt trên ta có:
\(\frac{64}{4x+3y+z}=\frac{64}{x+x+x+x+y+y+y+z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\)
a/d tương tự với 2 cái còn lại rồi cộng vế với vế ; thay tổng 1/x+1/y+1/z=1 là xong nhé

27 tháng 3 2016

tách mẫu thành 3x+3y +x+z 
mấy mauax còn lại tương tự
sau đó dúng ssww

27 tháng 3 2016

http://diendantoanhoc.net/topic/156111-t%C3%ADnh-gi%C3%A1-tr%E1%BB%8B-l%E1%BB%9Bn-nh%E1%BA%A5t-c%E1%BB%A7a-m-frac14x3yz-frac1x4y3z-frac13xy4z/

9 tháng 10 2017

Lời giải:

Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\ge\frac{8^2}{4x+3y+z}\)

\(\Leftrightarrow\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\ge\frac{64}{4x+3y+z}\)

Thiết lập tương tự với các phân thức còn lại:

\(\frac{4}{y}+\frac{3}{z}+\frac{1}{x}\ge\frac{64}{4y+3z+x}\)

\(\frac{4}{z}+\frac{3}{x}+\frac{1}{y}\ge\frac{64}{3x+y+4z}\)

Cộng theo vế: \(8\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge64\left(\frac{1}{4x+3y+z}+\frac{1}{x+4y+3z}+\frac{1}{3x+y+4z}\right)\)

\(\Leftrightarrow\frac{1}{4x+3y+z}+\frac{1}{x+4y+3z}+\frac{1}{3x+y+4z}\le\frac{1}{8}\)

Vậy GT:N của biểu thức là \(\frac{1}{8}\) khi \(x=y=z=3\)

7 tháng 2 2019

Hay :D :) . Thanks chị 

3 tháng 6 2019

Có \(\sqrt{\frac{x}{\sqrt[]{3x+yz}}}=\sqrt[]{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}}\)

Làm tương tự với 2 cái còn lại

Ta sẽ dùng bđt cô si mở rộng: (a+b+c)^2<=3(a^2+b^2+c^2)

Đặt A là biểu thức để bài cho

Có A^2<=\(3\left(\frac{x}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt[]{\left(y+x\right)\left(y+z\right)}}+\frac{z}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\right)\)

Ta có \(\frac{1}{\sqrt{\left(x+y\right)\left(x+z\right)}}< =\frac{1}{2}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)

nên \(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}< =\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

làm tương tự với 2 ngoặc còn lại ta sẽ thấy A^2<=\(\frac{9}{2}\)

hay A<=\(\frac{3}{\sqrt{2}}\)

dấu bằng xảy ra khi x=y=z=1

Chúc bạn học tốt!

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

14 tháng 5 2018

Từ dữ kiện đề bài => x + y + z = xyz

Ta có : 

\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)

                                                                                                                   \(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)

Tương tự với hai hạng tử còn lại , suy ra 

\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Vậy Max = 3/2 <=> x = y = z 

Nguồn : Đinh Đức Hùng 

27 tháng 7 2021

Ta có: \(P=\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz}+\frac{\sqrt{z}}{1+z+xz}\)

\(P=\frac{\sqrt{x}}{xy+x+1}+\frac{x\sqrt{y}}{x+xy+xyz}+\frac{xy\sqrt{z}}{xy+xyz+x^2yz}\)

\(P=\frac{\sqrt{x}}{xy+x+1}+\frac{x\sqrt{y}}{xy+x+1}+\frac{\sqrt{xy}.\sqrt{xyz}}{xy+x+1}\)

\(P=\frac{\sqrt{x}+x\sqrt{y}+\sqrt{xy}}{xy+x+1}\le\frac{\frac{x+1}{2}+\frac{x\left(y+1\right)}{2}+\frac{xy+1}{2}}{xy+x+1}\) (bđt cosi)

=> \(P\le\frac{x+1+xy+x+xy+1}{2\left(xy+x+1\right)}=\frac{2\left(xy+x+1\right)}{2\left(xy+x+1\right)}=1\)

Dấu "=" xảy ra<=> x =  y = z = 1

Vậy MaxP = 1 <=> x = y = z = 1

11 tháng 9 2021

Ta có \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}\)

Tương tự => \(M=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}+\frac{1+2z+zx}{\left(1+x\right)\left(z+1\right)}+\frac{1+2x+xy}{\left(1+x\right)\left(y+1\right)}\)

=> \(M=\frac{\left(1+2y+yz\right)\left(1+x\right)+\left(1+2z+zx\right)\left(1+y\right)+\left(1+2x+xy\right)\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

=>\(M=\frac{6+3\left(x+y+z\right)+3\left(xy+yz+xz\right)}{2+\left(x+y+z\right)+\left(xy+yz+xz\right)}=3\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn