Cho ngũ giác ABCDE có các cạnh bằng nhau và góc A= góc B= góc C.
a)Chứng minh ABCD là hình thang cân.
b)Chứng minh ABCDE là ngũ giác đều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cj kham khảo
a) Nối AC; AD
Ngũ giác ABCDE được chia thành 3 tam giác: ΔABC, ΔACD, ΔADE. Tổng các góc trong của mỗi tam giác bằng 1800
Tổng các góc trong của ngũ giác ABCDE là 1800. 3 = 5400
b) Vì ABCDE là ngũ giác đều nên
\(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=\widehat{E}=\frac{540^0}{5}=108^0\)
Mặt khác ΔABC cân tại B nên
\(\widehat{BAC}+\widehat{BCA}=\frac{180^0-108^0}{2}=36^0\)
\(\Rightarrow\widehat{CAE}=\widehat{ACD}=108^0-36^0=72^0\)
\(\Rightarrow\widehat{EDC}+\widehat{ADC}=108^0+72^2=180^0\)
Suy ra ED // AC hay ED // CF.
Chứng minh tương tự ta có EF // CD
Mặt khác ED = DC (gt)
nên tứ giác CEFD là hình thoi.
a: ΔEAD cân tại E
=>góc EAD=góc EDA=(180-108)/2=36 độ
ΔBAC cân tại B
=>góc BAC=góc BCA=(180-108)/2=36 độ
=>góc DAC=108-36-36=36 độ
=>góc EAD=góc DAC=góc CAB
b: góc CAE=36+36=72 độ
=>góc CAE+góc AED=180 độ
=>AC//ED
=>ED//AF
góc ABD+góc BAE=180 độ
=>AE//BF
=>AE//DF
mà ED//AF
và AE=ED
nên AEDF là hình thoi
a: ΔEAD cân tại E
=>góc EAD=góc EDA=(180-108)/2=36 độ
ΔBAC cân tại B
=>góc BAC=góc BCA=(180-108)/2=36 độ
=>góc DAC=108-36-36=36 độ
=>góc EAD=góc DAC=góc CAB
b: góc CAE=36+36=72 độ
=>góc CAE+góc AED=180 độ
=>AC//ED
=>ED//AF
góc ABD+góc BAE=180 độ
=>AE//BF
=>AE//DF
mà ED//AF
và AE=ED
nên AEDF là hình thoi
Dễ thấy AB=BC=CD=DE
và \(ABC\ge CDE=>AC\ge CE\)
Tam giác ACE có \(AC\ge CE=>AEC\ge CAE\left(1\right)\)
\(ABC\ge CDE=>\frac{180^0-B}{2}\le\frac{180^0-D}{2}=>BAC\le CED=>CED\ge BAC\left(2\right)\)
Cộng theo vế (1) và (2)
\(AEC+CED\ge CAE+BAC=>E\ge A,mà.E\le A=>E=A\)
Vậy \(A=B=C=D=E\),mà ngũ giác ABCDE có các cạnh = nhau nên là ngũ giác đều
Số đo mỗi góc của ngũ giác đều là 1080.
Ta có tam giác ABC cân tại B
⇒ A 1 ^ = C 1 ^ = ( 180 0 − 108 0 ) : 2 = 36 0 ⇒ E A C ^ = D C A ^ (1)
Chứng minh tương tự ta được:
C 3 ^ = E ^ 1 = 36 0 ⇒ C 2 ^ = 36 0
Có C 2 ^ = E 1 ^ = 36 0 ⇒ E D / / A C (2)
Từ (1) và (2), suy ra ACDE là hình thang cân (ĐPCM)
(Các khác: Có thể chứng minh hình thang ACDE có hai đường chéo bằng nhau)
* Chứng minh tương tự ta có J E F ^ = E F G ^ = F G H ^ = G H I ^ = H I J ^ = I J E ^ .
Vậy tứ giác CDEK là hình bình hành
mà CD = DE, suy ra hình bình hành CDEK là hình thoi (ĐPCM)