2008 + 2007/2 + 2006/3 + ... + 2/2007 + 1/2008
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}\)
\(=3-\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}>1\).
\(B=\frac{2006+2007+2008}{2007+2008+2009}< \frac{2007+2008+2009}{2007+2008+2009}=1\).
Suy ra \(A>B\).
P/s : Lớp 6 nhé bạn
Dấu \(.\)là dấu nhân
Đặt \(A=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}\)
Ta có :
\(A=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(\Rightarrow A=1+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)\)
\(\Rightarrow A=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)
\(\Rightarrow A=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)
\(\Rightarrow A=2009.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
\(\Rightarrow A=2009.B\)
Nên : \(\frac{A}{B}=\frac{2009.B}{B}=2009\)
Vậy kết quả biểu thức đã cho là \(2009\)
~ Ủng hộ nhé
\(\frac{\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=2009\)
\(=\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1\)
\(=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2008}+\dfrac{2009}{2009}\)
\(=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2009}\right)\)