Viết phương trình đường thẳng đi qua điểm \(M\left(-1;6\right)\) và tạo với các tia Ox, Oy một tam giác có diện tích bằng 4.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Đường thẳng (d, ) có : \(\overrightarrow{u}\left(-1;6\right)\)
Mà (d) song song với (d,)
=> \(\overrightarrow{u}\left(-1;6\right)\) là vecto chỉ phương của (d)
=> Phương trình tham số của (d) là :
\(\left\{{}\begin{matrix}x=3-t\\y=-4+6t\end{matrix}\right.\) \(\left(t\in R\right)\)
Vậy ...
- Ta có phương trình tham số :
\(\left\{{}\begin{matrix}x=3-t\\y=-5+2t\end{matrix}\right.\) \(\left(t\in R\right)\)
Lời giải:Điểm M,N có vẻ không có vai trò gì trong bài toán.
Ta có: $\overrightarrow{u_{\Delta}}=(2,-1)$
$\overrightarrow{u_{d'}}=(a,b)$
\(\cos (\Delta, d')=\frac{\overrightarrow{u_{\Delta}}.\overrightarrow{u_d'}}{|\overrightarrow{u_{\Delta}}||\overrightarrow{u_d'}|}=\frac{2a-b}{\sqrt{a^2+b^2}.\sqrt{5}}=\cos 45^0=\frac{\sqrt{2}}{2}\)
$\Rightarrow a=3b$ hoặc $a=-\frac{b}{3}$
PTĐT $d'$ là:
$-x+3y=0$ hoặc $3x+y=0$
Tại sao từ cos 450=\(\dfrac{\sqrt{2}}{2}\) thì lại => a=3b hoặc a=\(\dfrac{-b}{3}\) ạ ?
\(\Delta:2x+3y-1=0.\)
\(\Rightarrow\) VTPT của \(\Delta\) là \(\overrightarrow{n_{\left(\Delta\right)}}=\left(2;3\right).\)
Phương trình đường thẳng \(\left(d\right)\) song song với đường thẳng \(\Delta:2x+3y-1=0.\)
\(\Rightarrow\) VTPT của đường thẳng \(\Delta\) cũng là VTPT của đường thẳng \(\left(d\right).\)
\(\Rightarrow\) VTPT của \(\left(d\right)\) là \(\overrightarrow{n_{\left(d\right)}}=\left(2;3\right).\)
Ta có đường thẳng \(\left(d\right)\) nhận \(\overrightarrow{n_{\left(d\right)}}=\left(2;3\right)\) làm VTPT; đi qua điểm \(A\left(3;-1\right).\)
\(\Rightarrow\) Phương trình đường thẳng \(\left(d\right)\) là:
\(2\left(x-3\right)+3\left(y+1\right)=0.\\ \Leftrightarrow2x-6+3y+3=0.\\ \Leftrightarrow2x+3y-3=0.\)
ta có \(\overrightarrow{MN=}\left(-4;-1\right)\) là vecto chỉ phương của đường thẳng cần tìm ( gọi là đường thẳng d )
Khi đó phương trình đường thẳng d có dạng : \(\left\{{}\begin{matrix}x=-4t\\y=-1-t\end{matrix}\right.\)( khi lấy điểm N là điểm đi qua)
hoặc \(\left\{{}\begin{matrix}x=4-4t\\y=-t\end{matrix}\right.\)( khi lấy điểm M là điểm đi qua)
\(a,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a+b=-5\\a=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow y=-2x+3\)
\(b,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}8a+b=-1\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=1\end{matrix}\right.\Leftrightarrow y=-\dfrac{1}{4}x+1\)
\(c,\) Gọi đt đi qua M và N là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b=-3\\-6a+b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-2\end{matrix}\right.\Leftrightarrow y=\dfrac{1}{2}x-2\)
Thay \(x=1;y=1\Leftrightarrow1=\dfrac{1}{2}\cdot1-2\Leftrightarrow1=-\dfrac{1}{2}\left(\text{vô lí}\right)\)
\(\Leftrightarrow P\notinđths\)
Vậy 3 điểm này ko thẳng hàng
Vì (d): y=ax+b song song với y=-2x+5
nên a=-2
Vậy: (d): y=-2x+b
a: Thay x=0 và y=0 vào (d), ta được:
\(-2\cdot0+b=0\)
hay b=0
b: Thay x=1 và y=10 vào (d), ta được:
\(-2\cdot1+b=10\)
hay b=12
a: vecto AB=(-1;6)
=>VTPT là (6;1)
Phương trình tham số là;
x=1-t và y=-2+6t
b: PTTQ là:
6(x-1)+1(y+2)=0
=>6x-6+y+2=0
=>6x+y-4=0
Gọi pt đường thẳng có dạng: \(y=ax+b\)
Đường thẳng qua M nên: \(6=-a+b\Rightarrow b=a+6\)
\(\Rightarrow y=ax+a+6\)
Đường thẳng cắt 2 tia Ox, Oy khi \(a\ne\left\{-6;0\right\}\)
Gọi A là giao điểm với Ox \(\Rightarrow A\left(-\dfrac{a+6}{a};0\right)\) \(\Rightarrow OA=\left|x_A\right|=\left|\dfrac{a+6}{a}\right|\)
Gọi B là giao điểm với Oy \(\Rightarrow B\left(0;a+6\right)\Rightarrow OB=\left|y_B\right|=\left|a+6\right|\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\left|\dfrac{a+6}{a}\right|.\left|a+6\right|=4\)
\(\Leftrightarrow\left|\dfrac{a^2+12a+36}{a}\right|=8\Rightarrow a^2+20a+36=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-2\\a=-18\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-2x+4\\y=-18x-12\end{matrix}\right.\)