Bài 1: Cho ∆ABC có \(A\left(1;-2\right),B\left(0;4\right),C\left(6;3\right)\). Viết phương trình tham số của:
a) Đường thẳng D qua A và có một VTCP là \(\left(1;-2\right)\)
b) Đường trung trực của AB
c) Đường thẳng AB
d) Đường trung bình ứng với cạnh BC
a.Phương trình d: \(\left\{{}\begin{matrix}x=1+t\\y=-2-2t\end{matrix}\right.\)
b. Gọi H là trung điểm AB \(\Rightarrow H\left(\dfrac{1}{2};1\right)\)
\(\overrightarrow{BA}=\left(1;-6\right)\Rightarrow\) trung trực AB nhận \(\left(6;1\right)\) là 1 vtcp
Phương trình: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}+6t\\y=1+t\end{matrix}\right.\)
c. \(\overrightarrow{BA}=\left(1;-6\right)\) nên AB nhận (1;-6) là 1 vtcp
Phương trình AB: \(\left\{{}\begin{matrix}x=1+t\\y=-2-6t\end{matrix}\right.\)
d. Gọi M là trung điểm AC \(\Rightarrow M\left(\dfrac{7}{2};\dfrac{1}{2}\right)\) \(\Rightarrow\overrightarrow{MH}=\left(3;-\dfrac{1}{2}\right)=\dfrac{1}{2}\left(6;-1\right)\)
Phương trình MH: \(\left\{{}\begin{matrix}x=\dfrac{7}{2}+6t\\y=\dfrac{1}{2}-t\end{matrix}\right.\)