K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Hàm số y = (m-1 )x +2 có phần hệ số a = m-1 , b = 2

Hàm số y = 3x +1 có phần hệ số a' = 3 , b' = 1

Để hàm số y = ( m -1)x +2 song song với hàm số y = x+3 thì

\(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Rightarrow m-1=3\Rightarrow m=4\)

Vậy...

b, Để đồ thị đi qua điểm M(2;-2) \(\Leftrightarrow-2=\left(m-1\right).2+2\)

\(\Leftrightarrow2m-2+2=-2\)

\(\Leftrightarrow m=-1\)

Bài 1:

a: Để hàm số đồng biến thì a>0

Để hàm số nghịch biến thì a<0

b: Để hai đường vuôg góc thì a*1=-1

=>a=-1

Bài 2:

PTHĐGĐ là:

1/4x^2=2x+m-4

=>x^2=8x+4m-16

=>x^2-8x-4m+16=0

Δ=(-8)^2-4(-4m+16)

=64+16m-64=16m

Để (P) cắt (d) tại hai điểm phân biệt thì 16m>0

=>m>0

18 tháng 11 2019

Để \(y=-1\)

\(\Leftrightarrow x^2+3x=-1\)

\(\Leftrightarrow x^2+3x+1=0\)

\(\Leftrightarrow x^2+2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+1=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}+\frac{\sqrt{5}}{2}\right)\left(x+\frac{3}{2}-\frac{\sqrt{5}}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}+\frac{\sqrt{5}}{2}=0\\x+\frac{3}{2}-\frac{\sqrt{5}}{2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3-\sqrt{5}}{2}\\x=\frac{-3+\sqrt{5}}{2}\end{cases}}\)

Vậy ...

24 tháng 12 2016

\(\orbr{\begin{cases}y_1=-x+1\\y_2=2x-5\end{cases}}\Rightarrow y1=y2\Rightarrow-x+1=2x-5\Rightarrow\orbr{\begin{cases}x=2\\y1=y2=-1\end{cases}}\) A(2,-1)

y3 đi qua A=> \(\hept{\begin{cases}x=2\\y_3=-1\end{cases}\Leftrightarrow\left(2m-4\right).2-1=-1\Rightarrow m=2}\)

với m=2=> y=-1

ylà đường thẳng // với trục hoành cắt trục tung tại (0,-1)

11 tháng 12 2017

a)Để y nhận giá trị dương thì x phải là số âm (theo tính chất: Âm*Âm=Dương)

b)Để y nhận giá trị âm thì x phải là số dương (theo tính chất: Âm*Dương=Âm)

5 tháng 3 2017

\(y=f\left(x\right)=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3+2\left(12-x\right)}{12-x}=2+\frac{3}{12-x}\)

Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTLN <=> \(\frac{3}{12-x}\) đạt GTLN

=> 12 - x là số nguyên dương nhỏ nhất 

=> 12 - x = 1 => x = 11

Vậy GTLN của hàm số đó là 5 tại x = 11

Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTNN <=> \(\frac{3}{12-x}\)đạt GTNN

=> 12 - x là số nguyên âm lớn nhất

=> 12 - x = - 1 => x = 13

Vậy \(y_{min}=-1\Leftrightarrow x=13\)