có bao nhiêu số thực x thỏa mãn : |x| = -x ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trắc nghiệm rất lẹ (chắc vài giây), còn tự luận hơi lâu:
Hiển nhiên chỉ cần xét với \(x>2\) (vì vế trái luôn dương). Chú ý rằng \(a^{logx}=x^{loga}\)
Với \(a=10\Rightarrow x+2=x-2\) vô nghiệm (ktm)
- Trắc nghiệm: với \(a>10\Rightarrow\left(x^{loga}+2\right)^{loga}>x+2>x-2\) pt vô nghiệm
Với \(a< 10\) chọn 2 giá trị a=2 và a=9 để kiểm tra hàm \(\left(x^{loga}+2\right)^{loga}-x+2\) thấy đều đổi dấu ở chế độ table \(\Rightarrow a=\left\{2;3;...;9\right\}\) có 8 giá trị nguyên
- Tự luận: xét với \(x>2\), đặt \(loga=m>0\) pt trở thành: \(\left(x^m+2\right)^m=x-2\)
Đặt \(x^m+2=t\Rightarrow\left\{{}\begin{matrix}x^m=t-2\\t^m=x-2\end{matrix}\right.\)
\(\Rightarrow x^m-t^m=t-x\Rightarrow x^m+x=t^m+t\) (1)
Xét hàm \(f\left(x\right)=x^m+x\Rightarrow f'\left(x\right)=mx^{m-1}+1>0\Rightarrow f\left(x\right)\) đồng biến
Do đó \(\left(1\right)\Rightarrow x=t\Rightarrow x^m=x-2\Rightarrow x^m-x+2=0\)
Xét hàm \(f\left(x\right)=x^m-x+2\)
- Với \(m>1\Rightarrow f'\left(x\right)=m.x^{m-1}-1>1-1\ge0\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow f\left(x\right)>f\left(2\right)=2^m-2+2=2^m>0\Rightarrow f\left(x\right)\) vô nghiệm (ktm)
- Với \(0< m< 1\) ta có:
\(f\left(2\right)=2^m>0\)
\(\lim\limits_{x\rightarrow+\infty}\left(x^m-x+2\right)=\lim\limits_{x\rightarrow+\infty}x\left(x^{m-1}-1+\dfrac{2}{x}\right)\)
Chú ý rằng \(m< 1\Rightarrow x^{m-1}=\dfrac{1}{x^{1-m}}\rightarrow0\) khi \(x\rightarrow+\infty\Rightarrow x^{m-1}-1+\dfrac{2}{x}\rightarrow-1\Rightarrow\lim\limits_{x\rightarrow+\infty}\left(x^m-x+2\right)=-\infty\)
\(\Rightarrow f\left(2\right).\lim\limits_{x\rightarrow+\infty}f\left(x\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thỏa mãn \(x>2\)
Vậy \(0< m< 1\) hay \(0< loga< 1\Rightarrow2\le a< 10\Rightarrow a=\left\{2;3;...;9\right\}\)
a: Ta có: 9,5<x<17,7
mà x là số nguyên
nên \(x\in\left\{10;11;12;...;17\right\}\)
Số số hạng thỏa mãn là 17-10+1=8(số)
b: Ta có: -1,23<x<2,5
mà x là số nguyên
nên \(x\in\left\{-1;0;1;2\right\}\)
=>Có 4 số thỏa mãn
vì x+x=x.x
suy ra x.x-2x=0
suy ra \(x^2-2x+1=1\) (cộng cả 2 vế với 1)
suy ra \(\left(x-1\right)^2=1\) .suy ra x-1=1 hoặc x-1=-1
suy ra x=2 hoặc x=0
vậy có 2 giá trị x thoả mãn phương trình
a) \({3^x} = 9 \Leftrightarrow {3^x} = {3^2} \Leftrightarrow x = 2\)
\({3^x} = \frac{1}{9} \Leftrightarrow {3^x} = {3^{ - 2}} \Leftrightarrow x = - 2\)
b) Có 1 số thực x thỏa mãn: \({3^x} = 5\)
Với \(x\le3\) hiển nhiên ko thỏa mãn nên ta chỉ cần xét với \(x>3\)
\(\Leftrightarrow\left(x^{log_5m}+3\right)^{log_5m}=x-3\)
Đặt \(log_5m=k>1\Rightarrow\left(x^k+3\right)^k=x-3\)
Đặt \(x^k+3=t>3\Rightarrow\left\{{}\begin{matrix}x^k=t-3\\t^k=x-3\end{matrix}\right.\)
\(\Rightarrow x^k-t^k=t-x\)
\(\Rightarrow x^k+x=t^k+t\)
Hàm \(f\left(u\right)=u^k+u\) có \(f'\left(u\right)=k.u^{k-1}+1>0\Rightarrow f\left(u\right)\) đồng biến khi \(u>3\)
\(\Rightarrow x=t\)
\(\Rightarrow x^k+3=x\Rightarrow x^k-x+3=0\)
Với \(k>1\) ta có \(f\left(x\right)=x^k-x+3\) có \(f'\left(x\right)=k.x^{k-1}-1>1.3^0-1=0\) khi \(x>3\) nên hàm đồng biến
\(\Rightarrow f\left(x\right)>f\left(3\right)=3^k>0\Rightarrow f\left(x\right)\) vô nghiệm
Vậy ko tồn tại \(m>1\) thỏa mãn yêu cầu đề bài
TL:
ko có số x nào thoả mãn đc nhé
.
HT