|a+5|= 0
Cần gấp!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với `a > 0,b >= 0` có:
`Bth=[a\sqrt{b}+b]/[a-b] . \sqrt{[b(a+b-2\sqrt{ab})]/[a^2+2a\sqrt{b}+b]} . (\sqrt{a}+\sqrt{b})`
`=[\sqrt{b}(a+\sqrt{b})]/[a-b].\sqrt{[b(\sqrt{a}-\sqrt{b})^2]/[(a+\sqrt{b})^2]}.(\sqrt{a}+\sqrt{b})`
`=[\sqrt{b}(a+\sqrt{b})|\sqrt{a}-\sqrt{b}|.\sqrt{b}.(\sqrt{a}+\sqrt{b})]/[(a-b)(a+\sqrt{b})]`
`=[b|\sqrt{a}-\sqrt{b}|]/[\sqrt{a}-\sqrt{b}]`
`={(b\text{ nếu }\sqrt{a} >= \sqrt{b}),(-b\text{ nếu }\sqrt{a} < \sqrt{b}):}`
\(a,\Leftrightarrow\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)+\dfrac{3}{4}=0\\ \Leftrightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}=0\\ \Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=-\dfrac{3}{4}\left(vô.lí\right)\\ \Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow\left(2x-5\right)\left(2x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
A=1/5x6+1/6x7+..+1/17x18
=1/5-1/6+1/6+1/7+...+1/17-1/18
=1/5-1/18=13/90.
A = 5 + 5 ^ 2 + 5 ^ 3 + ... + 5 ^ 50
5 A = 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + ... + 5 ^ 51
5 A - A = ( 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + ... + 5 ^ 51 )
- ( 5 + 5 ^ 2 + 5 ^ 3 + ... + 5 ^ 50 )
4 A = 5 ^ 51 - 5
A = \(\frac{5^{51}-5}{4}\)
A=5^1+5^21+5^3+...+5^50
5^1A=5(5^1+5^2+5^3+..+5^50)
5A=5^2+5^3+..+5^50+5^51
5A-A=(5^2+5^3+..+5^50+5^51)-(5^1+5^2+5^3+..+5^50)
4A=5^51-5^1
A=(5^51-5^1):4
TL:
|a+5|= 0
a = 0 - 5
a = -5
|a + 5| = 0
a + 5 = 0
a = 0 - 5
a = (-5)
@Nghệ Mạt
#cua