Tìm GTNN của $\sqrt{-x^2+4x+12}$ - $\sqrt{-x^2+2x+3}$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(\hept{\begin{cases}-2\le x\le6\\-1\le x\le3\end{cases}}\Leftrightarrow-1\le x\le3\)
Thử bằng máy tính với \(x=-1;0;1;2;3\) thì thấy \(x=0\) thì A có giá trị nhỏ nhất so với các giá trị còn lại.
Từ đó ta có thể thử:
Chứng minh \(A\ge A\left(3\right)\) hay \(A\ge\sqrt{3}\)
\(\Leftrightarrow\sqrt{-x^2+4x+12}\ge\sqrt{3}+\sqrt{-x^2+2x+3}\)
\(\Leftrightarrow-x^2+4x+12\ge3-x^2+2x+3+2\sqrt{3}\sqrt{-x^2+2x+3}\)
\(\Leftrightarrow x+3\ge\sqrt{3\left(-x^2+2x+3\right)}\)
\(\Leftrightarrow x^2+6x+9\ge-3x^2+6x+9\)(tương đương được vì \(x+3\ge-1+3>0\))
\(\Leftrightarrow4x^2\ge0\)
Do bđt cuối đúng nên bđt cần chứng minh là đúng.
Vậy Min A = 3 khi x = 0.
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
Đk:\(-1\le x\le3\) (chính là cái bài cho kia)
Nếu \(x=0\) thì \(A=\sqrt{3}\) ta sẽ chứng minh nó là GTNN của \(A\)
Tức là ta cần chứng minh
\(\sqrt{-x^2+2x+3}+\sqrt{3}\le\sqrt{-x^2+4x+12}\)
Sau khi bình phương 2 vế rồi rút gọn ta cần chứng minh
\(\sqrt{-3\left(x^2+2x+3\right)}\le x+3\)
Từ khi \(x+3>0\), ta cần chứng minh
\(3\left(-x^2+2x+3\right)\le\left(x+3\right)^2\Leftrightarrow x^2\ge0\) (Đúng)
Vậy \(A_{Min}=\sqrt{3}\Leftrightarrow x=0\)
Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)
\(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)
\(\Rightarrow\) \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)
Vậy GTNN của biểu thức là 4
a: ĐKXĐ: (x-1)(x-3)>=0
=>x>=3 hoặc x<=1
b: ĐKXĐ: (x-4)(x-3)>=0
=>x>=4 hoặc x<=3
c: ĐKXĐ: (x-5)(x-4)>=0
=>x>=5 hoặc x<=4
\(A=\sqrt{2x^2-4x+3}+3\)
Ta có: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)
\(=2[\left(x-1\right)^2+\frac{1}{2}]\)
\(=2\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)
\(\Rightarrow MinA=4\Leftrightarrow x=1\)
Đặt \(A=\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}\)
\(A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-2\right)^2}\)
\(A=\left|x+1\right|+\left|x-2\right|\)
\(A=\left|x+1\right|+\left|2-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(A=\left|x+1\right|+\left|2-x\right|\ge\left|x+1+2-x\right|=\left|3\right|=3\)
Đẳng thức xảy ra khi ab ≥ 0
=> ( x + 1 )( 2 - x ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+1\ge0\\2-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\-x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le2\end{cases}}\Leftrightarrow-1\le x\le2\)
2. \(\hept{\begin{cases}x+1\le0\\2-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\-x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge2\end{cases}}\)( loại )
=> MinA = 3 <=> \(-1\le x\le2\)