K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

Mọi người giúp mình với!!!

 

26 tháng 6 2018

\(a,A=2^0+2^1+2^2+....+\)\(2^{2010}\)

\(\Rightarrow2A=2^1+2^2+2^3+....+2^{2011}\)

 \(2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)

  \(A=2^{2011}-2^0\)

\(A=2^{2011}-1\)

\(b,B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+3^3+...+3^{101}\)

\(3B-B=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{101}-1}{2}\)

\(c,C=4+4^2+4^3+...+4^n\)

\(\Rightarrow4C=4^2+4^3+4^4+...+4^{n+1}\)

\(4C-C=\left(4^2+4^3+4^4+...+4^{n+1}\right)-\left(4+4^2+4^3+...+4^n\right)\)

\(3C=4^{n+1}-4\)

\(\Rightarrow C=\frac{4^{n+1}-4}{3}\)

\(d,D=1+5+5^2+...+5^{2000}\)

\(\Rightarrow5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+5^3+...+5^{2001}\right)-\left(1+5+5^2+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(\Rightarrow D=\frac{5^{2001}-1}{4}\)

21 tháng 3 2021

b)

B=1+3+3^2+3^3+..+3^100

=> 3B = 3 + 3^2 + 3^3 + ...+ 3^101

=> 3B - B = ( 3 + 3^2 + 3^3 + ...+ 3^101) - (1+3+3^2+3^3+..+3^100)

=> 2B = 3^101 - 1

=> B =( 3^101 - 1) / 2

15 tháng 8 2023

a) \(1+2+3+4+...+n\)

\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right):2\)

\(=n\left(n+1\right):2\)

\(=\dfrac{n\left(n+1\right)}{2}\)

b) \(2+4+6+..+2n\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

c) \(1+3+5+...+\left(2n+1\right)\)

\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)

\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

15 tháng 8 2023

d) \(1+4+7+10+...+2005\)

\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)

\(=2006\cdot\left(2004:3+1\right):2\)

\(=2006\cdot\left(668+1\right):2\)

\(=1003\cdot669\)

\(=671007\)

e) \(2+5+8+...+2006\)

\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)

\(=2008\cdot\left(2004:3+1\right):2\)

\(=1004\cdot\left(668+1\right)\)

\(=1004\cdot669\)

\(=671676\)

g) \(1+5+9+...+2001\)

\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)

\(=2002\cdot\left(2000:4+1\right):2\)

\(=1001\cdot\left(500+1\right)\)

\(=1001\cdot501\)

\(=501501\)

7 tháng 9 2016

a,(2016 + 2).1008:2=1017072

b,(2001+5).500:2=501500

c,

1 tháng 10 2016

501 500

19 tháng 10 2021

1,Tính các tổng sau. a) 1 + 2+ 3+ 4 +....+ n

b) 2+4+6+8+...+2.n

c) 1+3+5+7+...+(2.n +1)

d) 1+4+7+10+..+2005

e) 2+5+8+...+2006

f) 1+5+9+..+2001

2,Tính nhanh : A = 1 +2 + 4 + 8 +16 + ...+ 8192 3,

a, Tính tổng các số lẻ có 2 chữ số.

b,Tính tổng các số chẵn có 2 chữ số.

4,a,Tổng 1 +2+3+....+n có bao nhiêu số hạng để kết quả tổng bằng 190

b,Có hay không số tự nhiên n sao cho 1+2+3+...+n =2004

c,Chứng minh rằng: [(1+2+3+...+n)-7]không chia hết cho 10

5 tháng 8 2023

\(S=\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(S=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}\)

\(T=\dfrac{3}{1x2}+\dfrac{3}{2x3}+\dfrac{3}{3x4}+\dfrac{3}{4x5}+...\dfrac{3}{nx\left(n+1\right)}\)

\(T=3x\left[\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\right]\)

\(T=3x\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\right]\)

\(T=3x\left(1-\dfrac{1}{n+1}\right)=\dfrac{3xn}{n+1}\)

uses crt;

var s:real;

i,n:integer;

begin

clrscr;

readln(n);

s:=0;

for i:=1 to n do 

  s:=s+(n*(n+1))/((n+2)*(n+3));

writeln(s:4:2);

readln;

end.